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Climate change

Tropical cyclones in climate models

Tropical cyclones and climate change

ARPEGE experiments
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Climate models

Components:
atmosphere, ocean, land surface, sea ice, ice sheets, etc. + coupling
+ modules (carbone cycle, aerosols, vegetation, atmospheric chemistry, etc.)

Resolution:
500 km in the 1990s, 200 km in the 2000s, 100 km in the 2010s... 50 km now?

Main atm. parameterizations:
turbulence, convection, clouds, gravity waves, etc.

Performance:
typically a dozen of simulated years per day.
1 daily variable 1 level 1 year = ∼50 Mo.

International context:
Coupled Model Intercomparison Project: standardized protocols / shared data.
2013 - 5th phase (CMIP5) = 25 centers, 60 versions of models.
2019 - 6th phase (CMIP6) = more?
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CNRM climate model

Atmosphere:
ARPEGE 6.3
T127 (∼150 km)
+ T359 (some exps)
91 levels

Ocean:
NEMO 3.6
1◦/ 75 levels
(1/3◦in the tropics)

Surface:
SURFEX 8
ISBA-CTRIP
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How low can we go?
� Distribution of the annual minimum of sea-level pressure over the Southern
Indian Ocean (domain 30–120 ◦W, 0–30 ◦S).

Annual minimum of 6h SLP over the RenR domain

SLP (hPa)

IBTRACS

ERAI

T127−h

860 880 900 920 940 960 980 1000

Reference: IBTRACS (1979–2017). Median = 915 hPa.
Reanalysis: ERAI (1979–2017, 80 km).
Model: CNRM-CM T127 (150 km).
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Option A: higher resolution
� (Only) a few modeling centers can afford higher-resolution simulations on
long time periods.

� At CNRM, a few CMIP6 experiments will be provided with resolution T359
+ a stretched configuration of ARPEGE has been developed for long.

Example of the stretched T359 grid used for RenovRisk simulations, c� F. Chauvin.
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How low can we go? (cont.)
� Distribution of the annual minimum of sea-level pressure over the Southern
Indian Ocean (domain 30–120 ◦W, 0–30◦S).

Annual minimum of 6h SLP over the RenR domain

SLP (hPa)

IBTRACS

ERAI

T127−h

860 880 900 920 940 960 980 1000

Reference: IBTRACS (1979–2017). Median = 915 hPa.
Reanalysis: ERAI (1979–2017, 80 km), ERA5 (2009–2018, 30 km).
Model: CNRM-CM T127 (150 km), T359 (50 km).
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How low can we go? (cont.)
� Distribution of the annual minimum of sea-level pressure over the Southern
Indian Ocean (domain 30–120 ◦W, 0–30◦S).

Annual minimum of 6h SLP over the RenR domain

SLP (hPa)

IBTRACS

ERAI

T127−h

ERA5*

T359−x

860 880 900 920 940 960 980 1000

Reference: IBTRACS (1979–2017). Median = 915 hPa.
Reanalysis: ERAI (1979–2017, 80 km), ERA5 (2009–2018, 30 km).
Model: CNRM-CM T127 (150 km), T359 (50 km).
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How low can we go? (cont.)
� Distribution of the annual minimum of sea-level pressure over the Southern
Indian Ocean (domain 30–120 ◦W, 0–30◦S).

Annual minimum of 6h SLP over the RenR domain

SLP (hPa)

IBTRACS

ERAI

T127−h

ERA5*

T359−x

860 880 900 920 940 960 980 1000

Reference: IBTRACS (1979–2017). Median = 915 hPa.
Reanalysis: ERAI (1979–2017, 80 km), ERA5 (2009–2018, 30 km).
Model: CNRM-CM T127 (150 km), T359 (50 km), stretched T359 (up to 10 km).
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How low can we go? (cont.)
� Distribution of the annual minimum of sea-level pressure over the Southern
Indian Ocean (domain 30–120 ◦W, 0–30◦S).

Annual minimum of 6h SLP over the RenR domain

SLP (hPa)

IBTRACS

ERAI

T127−h

ERA5*

T359−x

SIO−P1

SIO−F1

860 880 900 920 940 960 980 1000

Reference: IBTRACS (1979–2017). Median = 915 hPa.
Reanalysis: ERAI (1979–2017, 80 km), ERA5 (2009–2018, 30 km).
Model: CNRM-CM T127 (150 km), T359 (50 km), stretched T359 (up to 10 km).
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Pressure vs. wind relationship
� Winds for a given pressure seem to be stronger in ARPEGE.
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−1.98 < a < −1.88
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Minimum SLP vs. maximum wind speed along the track.
Each dot is a system — systems differ between IBTRACS/ERA5 and ARPEGE.
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Option B: cyclogenesis indices (CGIs)

� Idea: relate statistics of cyclone activity to the local environmental fields that
can be simulated by common climate models.

� Generic formulation: CGI = β × F (xi )× G (yj ),

with:
− β calibration parameter;
− F () function of dynamical environmental variables xi ;
− G() function of thermal environmental variables yj .

� Computed at each gridpoint and month, calibrated over a reference period.

� F () and G () based on empirical relationships fitted in a present-day climate.

In general, they are multiplicative functions:
F (xi ) =

�
i fi (xi ) ≡

�
i Xi and G(yj) =

�
j gj(yj) ≡

�
j Yj .
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Examples of CGIs
� Royer et al. (1998):

CYGP = βCYGP × |f |
�
ζr

f
|f | + 5

�
(Vshear + 3)−1

� �� �
dynamic

×max(P∗c − 3, 0)� �� �
thermal

� Emanuel and Nolan (2004):

GPI = βGPI ×
��105ζ

��3/2 (1 + 0.1Vshear)
−2

� �� �
dynamic

×
�

H
50

�3 �Vpot

70

�3

� �� �
thermal

� Tippett et al. (2011):

TCS = βTCS × cosϕ · exp (1.03ζ − 0.15Vshear)� �� �
dynamic

× exp (0.05H + 0.56SSTloc)� �� �
thermal

with:

− f Coriolis parameter, ϕ latitude;

− ζ (ζr ) absolute (relative) vorticity at 850 hPa;

− Vshear =
ΔV
Δp vertical wind shear between 850 and 200 hPa;

− P∗c normalized convective precipitation;

− H relative humidity at 600 hPa;

− SSTloc = SST− SST
[20S−20N]

local SST anomaly relative to the tropics;

− Vpot potential intensity = theoretical maximal TC wind (Emanuel 1988).
19 / 40



Validation of CGIs – 1/2

� CGIs represent cyclogenesis regions fairly well.

ERAI and IBTRACS 1979–2016.
CGIs are calibrated at 84 TCs per year.

—
N.B. For a more comprehensive evaluation, see Menkes et al. (2011).
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Validation of CGIs – 2/2

� CGIs represent cyclogenesis seasons fairly well.
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Climate change

Tropical cyclones in climate models

Tropical cyclones and climate change

ARPEGE experiments
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IPCC-AR5: less frequent, more intense
� Assessed from (only) the few high-resolution atmospheric simulations.
� Theory poorly understood, observations insufficient.

c� IPCC AR5 (2013), Section 14.6.1.
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Example of results from high-resolution simulations
� Classical approach: count TCs in present-day vs. future simulations.

c� Walsh et al., Clim. Change, 2015 (review paper).
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CGIs applied to the CMIP5 multi-model ensemble
� CMIP5 models project an overall increase in CGIs.
− consistent with the literature (e.g., Royer and Chauvin (2009)),
− inconsistent with HR simulations (e.g. Camargo (2014)).

Multi-model mean of 14 models. Clim over 1976–2005 and difference with 2070-2099 (RCP8.5).
CGIs are calibrated at 84 TCs/yr over the whole historical run (1900–2005).
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Individual contributions to changes in CGIs

� Recall: CGI = β × F (xi )× G (yj ) = β ×
�

i Xi ×
�

j Yj .

� Changes ΔCGI = CGIfut − CGIpre can thus be broken down into:

ΔCGI
CGIpre

=
�

i

ΔXi

X pre
i� �� �

dynamic

+
�

j

ΔYj

Y pre
j

� �� �
thermal

+ε

i.e.:

ΔCGI =
�

i

ΔXi

X pre
i
· CGIpre

� �� �
dynamic

+
�

j

ΔYj

Y pre
j
· CGIpre

� �� �
thermal

+ε�

with :
− ΔXi

X pre
i
· CGIpre individual contribution of variable xi ;

− ε, ε� second-order terms.
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Dynamical vs. thermal contributions
� Dynamical factors cause a slight decrease in CGIs −→ TC frequency?
� Thermal factors cause an increase in CGIs −→ TC intensity?

Dynamical Thermal

Decomposition is made for each model separately,
and then averaged over the ensemble (14 models).
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Climate change

Tropical cyclones in climate models

Tropical cyclones and climate change

ARPEGE experiments
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Experimental set-up
� Simulations performed*:

PRE625REFT359x (T359-x):
1979–2010, uniform T359 grid, SST from observations.

P625SIOT359srP1 (SIO-P1):
1965–2014, SIO-stretched T359 grid, SST from CNRM-CM5 historical run.

P625SIOT359srF1 (SIO-F1):
2045–2094, SIO-stretched T359 grid, SST from CNRM-CM5 RCP8.5 run.

� Reference for validation: IBTRACS over 1979–2016, ERA5 over 2009–2018.

� All data are interpolated onto a common 0.5◦ grid prior to tracking.

� Other simulations that could be made**:
− PRE625REFT359x-P1/F1, i.e. with SST from CNRM-CM5 runs;
− P625SIOT359srO1,i.e. with SST from observations;
− P625SIOT359sr[P,F][2,3,4...], i.e more members.

—

* by F. Chauvin.
** anyone interested?
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SIO-F1 vs SIO-P1 SST
� Quasi-uniform 2 ◦C warming in the SIO basin.

� CNRM-CM5 is close to the CMIP5 ensemble mean.

SST 2045–2094 (RCP8.5) vs. 1965–2014 in CNRM-CM5

SST 2070–2099 (RCP8.5) vs. 1976–2005 in a subset of CMIP5 models
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Tracking algorithm

� Chauvin et al. (2006):
− detection of candidates (criteria on SLP, T, U, V and vorticity);
− construction of TC tracks (association between consecutive time steps);
− completion of tracks before and after the TC phase (criterion on vorticity).

� Validation/calibration made on ERA5 vs. IBTRACS.
− e.g., retained wind threshold for detection = 13 m/s.

Example of observed vs. detected tracks in 2015 over the SIO basin

IBTRACS tracks 2015
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Densities of tracks – Validation

� Number in the SIO roughly OK but biases in the spatial pattern.
� Difficulties when comparing with IBTRACS + noise due to internal variability.

Density of track genesis (1 point per track)

Clim over various periods (!). Counts in 5×5◦ boxes.
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Densities of tracks – Climate change

� Decrease in the number of TCs and TC days by ∼20 %.
� The signal seems to be larger over the SWIO (to be confirmed).

Density of track genesis (1 point per track)

Density of TC points (several points per track)
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Less frequent, more intense
Annual number of TCs (left) + number of TC days (right)
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Stars indicate that the SIO-P1 vs. SIO-F1 difference is statistically significant.
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Other significant changes
� The maximum lifetime intensity is slightly shifted poleward (1◦ of lat).

� The intensification phase is slightly shorter: 1.75 −→ 1.5 days.

� The TC phase is slightly longer: 4.25 −→ 5 days.

� The cyclonic season is shorter (170 −→ 140 days), mainly because it starts
later (Nov 15 −→ Dec 15):
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CGIs applied to ARPEGE experiments

� In the SIO, cyclogenesis "should be" more localized according to CGIs.

Actual track densities CGIs
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CGIs applied to ARPEGE experiments – Climate change

� CGIs indicate a slight increase and poleward shift in the cyclogenesis.

Actual track densities CGIs
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Changes in seasonal timing
� CGIs seem to slightly decrease at the beginning of the season.
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Changes in seasonal timing – CMIP5

� This result in also found in the CMIP5 multi-model ensemble.
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Conclusions

ARPEGE experiments support the IPCC-AR5 general message.
SIO TCs are found to be less frequent / more intense in a warmer climate.

Cyclogenesis indices are not (fully) relevant for climate change.
But they might explain some aspects of TC changes (e.g. season duration).

—

Short-term prospectives with ARPEGE exps (e.g. RenovRisk):
− further understand the decrease in TC frequency: investigate the genesis and
intensification of intial vortices (Chia-Lun’s work with J.-P. Duvel’s tracker).
− further document TC changes (e.g. associated rainfall, link with MJO, etc.).
− further assess the link between TCs and cyclogenesis indices.
− compute additional members to improve the signal-to-noise ratio?

Longer-term prospectives:
− explore statistical learning for tracking TC in reanalysis / model data.
− develop cyclogenesis indices that can be relevant for climate change.
− analyse the CMIP6 multi-model database, esp. models with resolution < 50km.

40 / 40



Conclusions

ARPEGE experiments support the IPCC-AR5 general message.
SIO TCs are found to be less frequent / more intense in a warmer climate.

Cyclogenesis indices are not (fully) relevant for climate change.
But they might explain some aspects of TC changes (e.g. season duration).

—

Short-term prospectives with ARPEGE exps (e.g. RenovRisk):
− further understand the decrease in TC frequency: investigate the genesis and
intensification of intial vortices (Chia-Lun’s work with J.-P. Duvel’s tracker).
− further document TC changes (e.g. associated rainfall, link with MJO, etc.).
− further assess the link between TCs and cyclogenesis indices.
− compute additional members to improve the signal-to-noise ratio?

Longer-term prospectives:
− explore statistical learning for tracking TC in reanalysis / model data.
− develop cyclogenesis indices that can be relevant for climate change.
− analyse the CMIP6 multi-model database, esp. models with resolution < 50km.

40 / 40



Conclusions

ARPEGE experiments support the IPCC-AR5 general message.
SIO TCs are found to be less frequent / more intense in a warmer climate.

Cyclogenesis indices are not (fully) relevant for climate change.
But they might explain some aspects of TC changes (e.g. season duration).

—

Short-term prospectives with ARPEGE exps (e.g. RenovRisk):
− further understand the decrease in TC frequency: investigate the genesis and
intensification of intial vortices (Chia-Lun’s work with J.-P. Duvel’s tracker).
− further document TC changes (e.g. associated rainfall, link with MJO, etc.).
− further assess the link between TCs and cyclogenesis indices.
− compute additional members to improve the signal-to-noise ratio?

Longer-term prospectives:
− explore statistical learning for tracking TC in reanalysis / model data.
− develop cyclogenesis indices that can be relevant for climate change.
− analyse the CMIP6 multi-model database, esp. models with resolution < 50km.

40 / 40



Conclusions

ARPEGE experiments support the IPCC-AR5 general message.
SIO TCs are found to be less frequent / more intense in a warmer climate.

Cyclogenesis indices are not (fully) relevant for climate change.
But they might explain some aspects of TC changes (e.g. season duration).

—

Short-term prospectives with ARPEGE exps (e.g. RenovRisk):
− further understand the decrease in TC frequency: investigate the genesis and
intensification of intial vortices (Chia-Lun’s work with J.-P. Duvel’s tracker).
− further document TC changes (e.g. associated rainfall, link with MJO, etc.).
− further assess the link between TCs and cyclogenesis indices.
− compute additional members to improve the signal-to-noise ratio?

Longer-term prospectives:
− explore statistical learning for tracking TC in reanalysis / model data.
− develop cyclogenesis indices that can be relevant for climate change.
− analyse the CMIP6 multi-model database, esp. models with resolution < 50km.

40 / 40



Conclusions

ARPEGE experiments support the IPCC-AR5 general message.
SIO TCs are found to be less frequent / more intense in a warmer climate.

Cyclogenesis indices are not (fully) relevant for climate change.
But they might explain some aspects of TC changes (e.g. season duration).

—

Short-term prospectives with ARPEGE exps (e.g. RenovRisk):
− further understand the decrease in TC frequency: investigate the genesis and
intensification of intial vortices (Chia-Lun’s work with J.-P. Duvel’s tracker).
− further document TC changes (e.g. associated rainfall, link with MJO, etc.).
− further assess the link between TCs and cyclogenesis indices.
− compute additional members to improve the signal-to-noise ratio?

Longer-term prospectives:
− explore statistical learning for tracking TC in reanalysis / model data.
− develop cyclogenesis indices that can be relevant for climate change.
− analyse the CMIP6 multi-model database, esp. models with resolution < 50km.

40 / 40


