
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 143: 1581–1596, April 2017 A DOI:10.1002/qj.3028

Impact of urban canopy models and external parameters
on the modelled urban energy balance in a tropical city
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To date, existing urban land surface models (ULSMs) have been mostly evaluated and
optimized for mid- and high-latitude cities. For the first time, we provide a comparative
evaluation of four ULSMs for a tropical residential neighbourhood in Singapore using
directly measured energy balance components. The simulations are performed offline, for
an 11 month period, using the bulk scheme TERRA URB and three models of intermediate
complexity (CLM, SURFEX and SUEWS). In addition, information from three different
parameter lists are used to quantify the impact (interaction) of (between) external parameter
settings and model formulations on the modelled urban energy balance components.
Encouragingly, overall results indicate good model performance for most energy balance
components and align well with previous findings for midlatitude regions, suggesting the
transferability of these models to (sub)tropical regions. Similar to results from midlatitude
regions, the outgoing long-wave radiation and latent heat flux remain the most problematic
fluxes. In addition, the various combinations of models and different parameter values
suggest that error statistics tend to be dominated more by the choice of the latter than
the choice of model. Finally, our intercomparison framework enabled the attribution of
common deficiencies in the different model approaches found previously in midlatitude
regions: the simple representation of water intercepted by impervious surfaces leading to
a positive bias in the latent heat flux directly after a precipitation event; and the positive
bias in modelled outgoing long-wave radiation that is partly due to neglecting the radiative
interactions of water vapour between the surface and the tower sensor. These findings
suggest that future developments in urban climate research should continue the integration
of more physically based processes in urban canopy models, ensure the consistency between
the observed and modelled atmospheric properties and focus on the correct representation
of urban morphology, water storage and thermal and radiative characteristics.
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1. Introduction

Cities are hot spots that drive environmental change at multiple
scales (Grimm et al., 2008; Georgescu et al., 2014, 2015). As the
earth’s climate will change over the coming decades (Stocker

et al., 2013), global warming will impact urban areas especially
hard, resulting in a major threat to the health and well-being of
human populations (Watts et al., 2015). The tendency for urban
areas to be warmer than their surrounding rural environments
(referred to as the urban heat island) is a well-established
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phenomenon and originates from differences in surface energy
exchanges over built-up and natural areas (Oke, 1982). A range
of urban characteristics (including the high thermal admittance
of urban materials, dominance of impervious surfaces – and thus
reduced natural pervious surfaces – and the presence of three-
dimensional geometries) enhance the absorption of incoming
short-wave radiation from the sun and storage of heat energy,
partition less energy into evapotranspiration, and reduce a city’s
ability to cool after sunset, thereby warming the atmosphere
nearby.

It is now widely accepted by the climate community that
dominant processes leading to local and regional urban warming
effects need to be incorporated in climate models. Even though
some authors argue that the impact of urban areas might be
negligible in terms of temperature and precipitation at coarser
spatial resolutions (e.g. >10 km) or depend on the region of
interest (Trusilova et al., 2013), others find that e.g. urban
expansion implemented at such coarse scales is able to raise
near-surface temperatures, not only over the urban areas but
also over larger neighbouring areas (Georgescu et al., 2014).
Further, the tendency of regional climate modelling towards
convection-permitting model scales supports the need for a
proper representation of the local city climate (Phelan et al.,
2015; Prein et al., 2015). This will allow for an improved
assessment of local (urban) climate (projections) as well as
the potential for investigating various heat-stress mitigation
and adaptation strategies (Prein et al., 2015) such as green
urban infrastructure (e.g. Bowler et al., 2010; Demuzere et al.,
2014b), water-sensitive urban design (e.g. Coutts et al., 2013)
and changing radiative properties of the built environment
such as ‘cool roofs’ (Oleson et al., 2010a; Georgescu et al.,
2014).

Cities and their impacts on atmosphere are included in global,
regional and local climate models using urban land surface
models (ULSMs). A large number of ULSMs are currently
available which vary considerably in complexity from simple
bulk representations of the surface to more recent developments
that consider a complete energy balance at various levels within
the urban canyon (Best and Grimmond, 2015). As the first
of its kind, (Grimmond et al., 2010) launched the urban
land surface model intercomparison project (PILPS-urban) to
objectively assess and compare the performance of existing
ULSMs. This intercomparison tested a large number of ULSMs
(Table 1 in Best and Grimmond, 2015) in offline simulations
to evaluate their performance over a light industrial area in
Vancouver (British Columbia, Canada) and a suburban area in
Melbourne (Australia) (Grimmond et al., 2010, 2011), analysed
the representation of the seasonal cycle (Best and Grimmond,
2013) and addressed the role of initial conditions and the response
to certain atmospheric conditions (Best and Grimmond, 2014).
This effort helped to identify the dominant physical processes, the
level of complexity needed in an application specific context, and
parameter requirements. Other ULSM evaluations in online mode
(coupled to an atmospheric/climate model) include: a single-
and a multi-layer urban parametrization within the Coupled
Ocean–Atmosphere Mesoscale Prediction System for the New
York City metropolitan area (Holt and Pullen, 2007); various
urban canopy schemes (slab, single-layer and multi-layer with
and without a building energy model) in the Weather Research
and Forecasting/Chemistry model to evaluate the regional climate
and air quality of the Yangtze River Delta (China) (Liao et al.,
2014), and high-resolution regional climate simulations over
Berlin (Germany) with the COSMO-CLM regional climate model
coupled to the Town Energy Budget (TEB) model (Trusilova et al.,
2013, 2015), the Double Canyon Effect Parametrization (DCEP)
scheme (Schubert and Grossman-Clarke, 2012) and TERRA URB
(Wouters et al., 2015, 2016).

In addition to the model physics, the parameters describing the
urban surface in terms of land cover, morphology, geometry or
radiative and thermal properties play an important role. Ideally

site-specific information about building materials are available,
but often generalized global values are used. Regional tables such
as Jackson et al. (2010) and the ECOCLIMAP data (Champeaux
et al., 2005; Faroux et al., 2013) are commonly used by the
Community Land Model (Oleson et al., 2008b) or the SURFEX
model suite (Masson et al., 2013), respectively. Others have
addressed the sensitivity of these parameters via an optimization
approach, e.g. by perturbing a set of selected parameters at
each step and evaluating how modelled variables evolve. Loridan
et al. (2010) tested the sensitivity of surface energy fluxes to
varying input parameter values for the single-layer urban canopy
parametrization used in the Weather Research and Forecasting
model, and used this framework to suggest a set of recommended
parameter values for three categories of urban areas (Loridan
and Grimmond, 2012). Song and Wang (2014) coupled a single-
column model to the single-layer urban canopy model SLUCM to
address changing urban morphology, albedo, vegetation fraction
and aerodynamic roughness on the growth of the atmospheric
boundary layer and the distributions of temperature and humidity
in the mixed layer under convective conditions. Their results
conclude that changes in land-surface properties (hydrothermal
or geometric) have a significant impact on the evolution of the
overlying boundary layer. In addition, Wouters et al. (2016) tested
urban canopy parameter value ranges from the Local Climate
Zones (Stewart and Oke, 2012) in an online simulation over the
Belgian territory with COSMO-CLM coupled to TERRA URB.
Their study, amongst other results, reveals that, with respect to
surface temperatures, air temperatures and associated urban heat
islands, one should prioritize those parameters that are most
sensitive: the thermal parameters and the anthropogenic heat
emissions.

From the above it is clear that off- and online model
intercomparisons combined with sensitivity tests related to
external parameters are very demanding and also have limitations.
Cities are located in vastly different climatic zones and have
diverse built-up characteristics (cf. Local Climate Zones; Stewart
and Oke, 2012). More research is therefore required for
(climate) conditions not addressed in previous studies (Best
and Grimmond, 2015). A recent study by Karsisto et al. (2016a,
2016b) answered this call and tested the performance of three
ULSMs for several sites in and around the high-latitude city of
Helsinki (Finland): the Community Land Model (CLM; Lawrence
et al., 2011), the Surface Urban Energy and Water Balance
Scheme (SUEWS; Järvi et al., 2011, 2014) and SURFEX (Masson
et al., 2013). The present study extends this effort by evaluating
the three above-mentioned ULSMs together with TERRA URB
(Wouters et al., 2015, 2016) over a residential neighbourhood
in a tropical city. Even though currently most of the rapidly
expanding urban areas are located in (sub)tropical regions (Seto
et al., 2012), the total number of (sub)tropical urban climate
studies is limited Roth (2007). Given that the impact of climate
(change) on population health and well-being in these regions has
not yet been well established (Kjellstrom and McMichael, 2013;
Caminade et al., 2014), it is key to extend the process-based work
that seeks to improve our understanding and representation of
the (sub)tropical urban climate processes at play (Roth, 2007).
Against this background, Singapore’s tropical climate provides
a unique testbed against which the ULSMs have not yet been
bench-marked: a very humid environment with a very small
diurnal temperature range. In addition, the selected observation
period includes an exceptionally dry two-month period, allowing
for an in-depth exploration of the role of precipitation (and the
lack thereof) in a tropical setting.

The objective of the present study is to use directly measured
energy balance fluxes (Roth et al., 2017; Velasco et al., 2016) to
perform model evaluations using three types of input parameter
lists. Evaluations are performed for outgoing short- and long-wave
radiation (K↑ and L↑ respectively), net all-wave radiation (Q*),
turbulent sensible and latent heat fluxes (QH and QE respectively)
and the storage heat flux (�QS). In a first step, the performance of
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the models is evaluated for the site-specific reference parameter
list. Second, we examine the interaction and sensitivity of all
model and parameter list combinations. Finally, the sensitivity
of the models with respect to impervious water storage and
water vapour opacity is assessed. The article is structured as
follows: section 2 provides a brief description of the urban canopy
models, the sensitivity studies and evaluation metrics, followed in
section 3 by the study site, measurement set-up and description
of external parameters. The base-line model evaluation, results
of the inter-parameter list and -model interactions as well as the
sensitivity experiments are provided in section 4. General findings
and recommendations for future work are provided in section 5.

2. Methods

Although most models are part of a numerical weather prediction
or regional climate model, for the purpose of the present study
they are used in an offline mode. They are therefore forced
with atmospheric data observed above the canopy layer, which
removes a potential source of error produced by the atmospheric
model (section 3). For all model simulations, a two-week
spin-up period is considered to reduce the influence of model
initialization errors. Anthropogenic heat is neglected due to its
small contribution to the surface energy balance of the selected
site (Quah and Roth, 2012).

2.1. Description of urban canopy models

2.1.1. SURFEX

SURFEX combines a range of sub-models able to calculate
the exchange of sensible and latent heat, momentum, carbon
dioxide and other chemical species, as well as various particles,
between the atmosphere and several types of surfaces (Masson
et al., 2013). The latter include oceans, inland waters, a large
variety of natural land surfaces, and urban areas. Heterogeneity
within an area of interest is accounted for by the fractional
coverage of each main type (tile) contributing to the total area.
Natural tiles are treated by the ISBA (Interaction Soil--Biosphere-
-Atmosphere) land-surface model. Vegetation is described by
the original ISBA evapotranspiration model using an externally
imposed leaf area index (also section 3.2). Urban tiles use the
TEB model, a single-layer urban canopy model (Masson, 2000).
Here, the energy budgets for roofs, walls, and road surfaces are
solved separately for a homogeneous isotropic array of street
canyons. The lower-boundary conditions for roofs and walls are
obtained by prescribing an internal temperature while a zero flux
boundary condition is assumed for the road. Although gardens
inside street canyons are possible (Lemonsu et al., 2012), in this
study vegetated areas are treated as separate tiles with ISBA. The
overall structure of TEB is described in more detail in Masson
(2000) and Masson et al. (2013).

2.1.2. Community Land Model (CLM)

The CLM v4.0 (Bonan et al., 2011; Lawrence et al., 2011) is
the land-surface model of the Community Earth System Model
(CESM). In CLM, the land surface heterogeneity is represented by
main land units (glaciers, lakes, vegetation, wetland and urban),
which are further divided into sub-units. The urban fraction, for
example, can consist of roof, sunlit and shaded walls, pervious and
impervious canyon floor, while vegetation includes representa-
tions of up to 17 possible plant functional types. All biogeophysical
processes are independently simulated for each sub-unit using
the same atmospheric forcing, with subsequent calculation of
surface variables and fluxes by averaging the results for individual
sub-units and units weighted by their fractional areas (Oleson
et al., 2010b). The CLM urban parametrization (CLMU) follows
to a large extent the concepts of TEB (section 2.1.1). In CLMU,
liquid and solid precipitation can be intercepted, stored and

evaporated from the roof and canyon floor, respectively, while
the walls are hydrologically inactive. Recent work by Demuzere
et al. (2014a) introduced rainwater tanks, biofiltration systems
and urban irrigation, while Buzan et al. (2015) implemented heat
stress metrics. However, these features are not activated in the
present study. One of the differences between CLMU and TEB
is that in CLMU the roof is coupled to the canyon air properties,
while in TEB the roof interacts directly with the canopy air aloft
(Demuzere et al., 2013). A more detailed description of CLMU
is available in Oleson et al. (2008a, 2008b, 2010b).

2.1.3. TERRA URB

TERRA URB (Wouters et al., 2015, 2016) is the bulk urban
land-surface scheme of the COSMO(-CLM) model. It represents
the variability of ground heat and moisture transport, the
turbulent transfer of momentum, heat and moisture, and
the surface--atmosphere radiative exchanges in urban areas.
TERRA URB has been extensively evaluated in previous studies
(Trusilova et al., 2015; Wouters et al., 2015, 2016), demonstrating
satisfactory skill in reproducing the different urban surface
energy balance components and the urban heat island. It has
also been used to consider heat-stress scenarios under future
climate and urban land-use change scenarios in Belgium within
the Climate Report of the Flemish Environmental Agency
(Brouwers et al., 2015). The initial release of TERRA URB
features the non-iterative calculation of surface-layer stability
functions accounting for the roughness sub-layer (Wouters
et al., 2012); the impervious water-storage parametrization based
on a probability density function of water reservoirs (Wouters
et al., 2015); the Semi-empirical Urban canopY dependency
parametrization (SURY; Wouters et al., 2016); and the coupling
with the turbulence kinetic energy-based surface-layer transfer
module of the COSMO(-CLM) model (Doms et al., 2011).

2.1.4. SUEWS

The Surface Urban Energy and Water balance Scheme (SUEWS:
Järvi et al., 2011, 2014; Ward et al., 2016) simulates the surface
energy and water balance at the neighbourhood scale. It can
be run for multiple grids within a city and each model grid is
divided into seven surface types including impervious surfaces
(buildings and paved), different vegetated surfaces, bare soil
and water. The different surfaces are dynamically connected
(e.g. water is allowed to move between them). This study uses
version SUEWS V2016a with an adjusted surface conductance
parametrization particularly suitable for non-irrigated urban
surfaces (Ward et al., 2016). The radiative flux components
are derived from the incoming short-wave solar radiation using
the net all-wave radiation scheme (NARP; Offerle et al., 2003;
Loridan et al., 2011); the storage heat flux by the objective
hysteresis model (OHM; Grimmond et al., 1991); and the latent
heat flux uses the Penman–Monteith equation adjusted for urban
areas (Grimmond et al., 1991). In contrast to the other models
(having �QS as the residual), SUEWS has the sensible heat flux as
the residual of the energy balance. The model has been evaluated
in offline mode against measurements in several cities (Järvi
et al., 2011, 2014; Ward et al., 2016; Karsisto et al., 2016a, 2016b;
Alexander et al., 2016b) and used to estimate future climate
scenarios in connection with local climate zones (Alexander et al.,
2016a; H. C. Ward, 2017; personal communication). It is also
part of the Urban Model Evaluation Predictor (Lindberg et al.,
2015). Recent developments include an automatic treatment of
reanalysis data to be used to force the model (T. Kokkonen, 2016;
personal communication).

2.2. Impervious water storage

Large differences in evaporation rates between urban and rural
environments suggest a strong impact of urbanization on the
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global water and energy cycle (Wouters et al., 2015). Evaporation
from engineered pavements (e.g. asphalt and concrete) have
long been ignored (Nakayama and Fujita, 2010), yet attempts
have been made to accurately represent the urban surface water
balance, including water storage on impervious surfaces, run-off,
evapotranspiration and urban biofiltration and irrigation systems
(e.g. Grimmond and Oke, 1991; Masson, 2000; Wang et al., 2013;
Demuzere et al., 2014a; De Ridder et al., 2015; Wouters et al.,
2015). This study contributes to these ongoing efforts by testing
the representation of water-interception reservoirs (puddles)
using the Surface Interception Distribution (SID) approach
(Wouters et al., 2015), currently embedded in TERRA URB.
Although this framework was tested for midlatitude sites, Wouters
et al. (2015) revealed that the annual mean and variability of the
surface water balance is very sensitive to these water storage
reservoirs. Given that the current study focuses on a tropical site,
characterized by an abundance of (intense) precipitation, one can
expect an even stronger impact.

The SID approach assumes a linear probability density
distribution of water puddles as a function of puddle depth,
resulting in the following expression for the evaporative surface
fraction (section 2.2 of Wouters et al., 2015, gives a full derivation):

δ = δm

(
w

wm

)2/3

, (1)

where δm is the maximum puddle fraction, w is the amount of
water in the water puddles, and wm is the impervious water-
storage capacity. Wouters et al. (2015) combined observations
from Toulouse (France) and Basel (Switzerland) with model
experiments to obtain bulk value estimates yielding δm = 0.12 ±
0.04 and wm = 1.31 ± 0.20 kg m−2 (section 3.1 of Wouters
et al., 2015). The relation in Eq. (1) is similar to the one
used in CLM/SURFEX (e.g. Eq. (48) in Oleson et al., 2008b),
although their δm = 1 and wm = 1 kg m−2. In order to apply
Eq. (1) in a single-layer canopy model context for the current
site, the TERRA URB water-storage parameters are recalculated
according to Appendix B in Wouters et al. (2015), resulting in
δm = 0.2 and wm = 1.31 kg m−2. To obtain these numbers, two
assumptions are made: (i) the walls are hydrologically inactive
(default in CLM/SURFEX) and (ii) wm is assumed to be identical
for roof and road surfaces. In the remainder of this article, this
sensitivity run is denoted by ‘SID’.

2.3. The water vapour opacity effect

Previous offline evaluations and comparisons for midlatitude
sites typically identify a large positive daytime bias in L↑ (e.g.
Grimmond et al., 2011; Hénon et al., 2012; Demuzere et al.,
2013). Besides other potential explanations (e.g. source areal
differences between model and measurement; Järvi et al., 2014)
we hypothesize that radiative interactions established by the
mixed air in the urban canopy layer is disregarded in the offline
set-ups, while being resolved by the atmospheric model in online
coupled model set-ups. Such interactions might lead to a poor
performance of offline modelled L↑ compared to mast sensor
observations located several tens of metres above the urban
canopy, for which radiative interactions between the surface and
the sensor become important. One of these interactions is the
absorption and emission by water vapour (hereafter referred
to the water vapour opacity effect, WVO), affecting amongst
others the upwelling infrared radiation hitting the sensor at
mast height. Infrared radiation emitted from the surface at high
temperatures is absorbed by the water vapour molecules. At the
same time, the molecules themselves emit infrared radiation at
a lower temperature. We hypothesize that these interactions are
also relevant for the current site in Singapore: on the one hand – as
for any urban site – daytime, and in most cases night-time as well,
urban canopy surface temperatures are typically higher than the
air temperature aloft (e.g. Coutts et al., 2016; Wouters et al., 2016,

their Figure 2); and tropical regions are characterized by high
specific humidity levels (Roth et al., 2017), for which radiative
interactions with water vapour may become even more important
than for midlatitude sites.

In the absence of hydrometeors, where scattering of infrared
radiation can be neglected (Pielke, 2002), the WVO can be
approximated as:

R↑(z) � ε(δP)σT4
a + {

1 − ε(qv, δu)
}

L↑, (2)

where ε is the emissivity (taken as the complement of
the transmissivity) as a function of the optical path length
δP = ∫ z

zs
ρqvdz between the the effective canopy height from

where surface radiation originates (zs) and the sensor height (z),
ρ is the air density, qv is the specific humidity, Ta is the air
temperature and δu is the normal path length between zs and z.
For the current study, qv and Ta are approximated by the forcing
values (section 3.1) and assumed to be a constant throughout the
canopy layer. According to Pielke (2002), the infrared broadband
emissivity for water vapour is approximated as:

ε(δP) = 0.136 log10(δP) + 0.54, for log10(δP) > 0, (3)

with δP expressed in g cm−2. More details can be found in
Appendix A of Wouters et al. (2015).

Since SUEWS directly uses the forcing temperature in order to
calculate L↑ (Eq. 11 in Loridan et al., 2011), the effect of the water
vapour opacity is only tested for CLM, SURFEX and TERRA URB
and denoted by ‘WVO’ in the remainder of the article.

2.4. Evaluation metrics

Baseline comparison statistics include mean (e.g. X), standard
deviation (e.g. σX), coefficient of determination (r2), mean bias
error (MBE), mean absolute error (MAE) and the root mean
square error (RMSE) including both its systematic (RMSEs) and
unsystematic (RMSEu) components (e.g. Willmott and Matsuura,
2005; Oleson et al., 2008b; Grimmond et al., 2010; Demuzere et al.,
2013). In addition, Taylor diagrams (Taylor, 2001) are used to
provide a simultaneous assessment of each model’s capacity to
simulate the radiative and turbulent fluxes. Some statistics are
normalized by the standard deviation of the observed values
(denoted by ‘n’ in front of the statistic’s abbreviation). The
significance of the differences between modelled and observed
quantities are tested with the Perkins skill score (Sscore) (e.g.
Perkins et al., 2007; Devis et al., 2013, 2014). This simple metric
allows for a comparison across probability density functions
(PDFs), measuring the common area shared by the modelled and
observed PDF. Values range between zero and unity for no and
perfect overlap, respectively. In the remainder of this article we
consider PDFs to be significantly different when Sscore is <0.8,
which is more stringent than the value of 0.7 used in Perkins et al.
(2007) and Devis et al. (2013, 2014).

3. Site description, measurements and boundary conditions

3.1. Telok Kurau measurement site and observations

The data used to force and evaluate the models were measured
over a residential neighbourhood of Singapore, which is a small
(716 km2), densely populated (5.4 million people in 2013), low-
lying island city-state located ∼137 km north of the Equator.
The study area in the Telok Kurau (TK) district has low-rise
buildings (2--3 storey row and semi-detached houses and a few
five-storey condominiums) dissected by a network of mostly
minor streets. A detailed site survey covering an area within a
500 m radius around the micrometeorological tower (see below)
produced the following morphological and land cover parameters
representative of TK (Velasco et al., 2013): an average building and
tree height of 9.86 and 7.26 m respectively, a surface cover of 85%
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Table 1. Overview of surface cover, morphological, radiative and thermal characteristics describing the residential area of Telok Kurau, Singapore.

REF MA03 JA10

Urban fraction (%) Total 0.85 0.6 0.31
Buildings 0.39 0.3 0.19
Pervious roads – – 0.04
Impervious roads 0.46 0.3 0.08

Vegetation fraction (%) Total 0.15 0.4 0.69
Evergreena 0.11 0.2 0.37
Deciduousa – – 0.09
C4 grass 0.04 0.2 0.17
C3 crop – – 0.06

Height of roof (m) 9.86 10 30
H/W (--) 0.61 0.21 1.2
wm (kg m−2) 1 1 1

Total thickness (m) Roof 0.1356 0.55 0.05
Wall 0.13 0.195 0.34
Impervious road 1.15 1.15 0.05

Thickness of Roof 0.05, 0.0006, 0.075, 0.01 0.05, 0.4, 0.1 0.0033b

model layers (m) Wall 0.01, 0.11, 0.01 0.02, 0.13, 0.05 0.023b

Impervious road 0.05, 0.1, 1 0.05, 0.1, 1 0.025[exp{0.5(i−0.5)}−1]c

α (--) Bulk (0.21) (0.13) (0.21)
Roof 0.15 0.15 0.28
Wall 0.647 0.25 0.25
Impervious road 0.08 0.08 0.13

ε (--) Bulk (0.92) (0.91) (0.87)
Roof 0.9 0.9 0.82
Wall 0.9 0.85 0.88
Impervious road 0.93 0.94 0.91

Cv (MJ m−3 K−1)d Bulk (2.65) (1.38) (2.39)
Roof 1.31, 2.37, 0.0012, 1.12 2.11, 2.8, 2.9 1.0
Wall 1.12, 1.4, 1.12 1.55, 1.55, 2.9 1.01
Impervious road 2.1, 1.8, 1.5 1.94, 1.28, 1.28 2.06, 1.71

λ (W m−1 K−1)d Bulk (0.91) (0.39) (2.23)
Roof 0.93, 2.1, 0.026, 0.53 1.51, 0.08, 0.05 0.39
Wall 0.53, 0.79, 0.53 0.93, 0.93, 0.05 1.38
Impervious road 2.1, 1.8, 1.5 1.94, 1.28, 1.28 1.67, 0.56

REF is the reference namelist (measured values), MA03 is based on the ECOCLIMAP database used in SURFEX, and JA10 is the generic dataset used in CLMU.
H/W is the canyon height-to-width ratio, and wm the maximum water storage on impervious surfaces (roof and impervious road). α, ε, Cv and λ denote albedo,
emissivity, volumetric heat capacity and thermal conductivity respectively.
Values in brackets are the bulk values used for TERRA URB that are derived from urban-canopy parameters using the Semi-Empirical URban canopY parametrization
(SURY; Wouters et al., 2016) – freely available at https://github.com/hendrikwout/sury (accessed 27 March 2017).
aBroadleaf tropical tree.
bThe 15 roof and wall layers have a constant thickness.
cThe impervious road is discretized into 15 layers (denoted by i) with an exponentially increasing node depth and thus thickness (Eq. (4.8) in Oleson et al., 2010b).
dSUEWS uses the Objective Hysteresis Model (Grimmond et al., 1991). The coefficients used in the current study are a1 =0.719 (0.238), a2 =0.194 (0.427) and
a3 =−36.6 (−16.7) for impervious surfaces (buildings) (also Järvi et al., 2011).

impervious (39% buildings, 34% gravel/paved, 12% roads) and
15% pervious (11% tree crowns, 4% grass) and an area-averaged
height-to-width ratio (H/W) of 0.61 (Table 1). Many houses have
small gardens covered with turf grass and most streets are lined
with shade trees. The area corresponds to LCZ 3 or ‘compact low
rise’ (Stewart and Oke, 2012).

A micrometeorological tower installed in the southwest corner
of a grass-covered sports field in the centre of the study area
(1◦18′51.46′′N, 103◦54′40.31′′E; 10 m above sea level) supported
various meteorological sensors.

The sensible and latent turbulent energy fluxes were measured
using the eddy covariance (EC) technique with a 3D sonic
anemometer/infrared gas analyzer (CSAT3/LI-7500; Campbell
Scientific, Logan, Utah; LI-COR Biosciences, Lincoln, NE, USA).
The up- and downward short- and long-wave fluxes (K↑, K↓,
L↑, L↓ respectively) were measured with a four-component net
radiometer (CNR1; Kipp & Zonen, Delft, Holland). Additional
instrumentation included a temperature/humidity probe (T/RH)
(HMP45C; Vaisala, Helsinki, Finland). These sensors were
installed at a height of 23.7 m to ensure a sufficient height

above the surface roughness to measured spatially representative
turbulent fluxes at the neighbourhood scale (e.g. Roth, 2000;
Velasco and Roth, 2010). The flux measurements were processed
according and subjected to the usual quality control procedures
used in EC work. Finally, a rain-gauge (HOBO RG3; Onset
Computer Corporation, Bourne, MA, USA) measured rainfall
(Precip) near the ground. Observed �QS was estimated as the
residual from Q* and all other terms in the energy balance
equation. The TK site and EC measurements have been used in
a number of recent urban flux studies and are fully described in
Velasco et al. (2013) and Roth et al. (2017). All models described
in section 2.1 are forced with the above-mentioned observations
of surface pressure (Pa), K↓, L↓ (W m−2), T (K), wind speed
(m s−1), Precip (mm h−1) and RH (%).

Because of its equatorial location, Singapore has a typical trop-
ical rainforest climate (Köppen classification Af). Temperature
is uniformly high throughout the year (long-term annual mean:
27.5 ◦C) and rainfall abundant (∼2340 mm). The diurnal tem-
perature range is relatively small but larger than the mean
month-to-month variability (∼6.7 versus sim2 ◦C respectively).
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Figure 1. Daily temperature (top trace), absolute humidity (middle) and
precipitation totals (bottom) for 01 June 2013 to 17 April 2014, observed at
Telok Kurau (Singapore). For temperature and humidity, the daily range is
indicated by the bars and mean values by the small black symbols. [Colour figure
can be viewed at wileyonlinelibrary.com].

The climate during the period analysed in the present study
(1 June 2013 to 17 April 2014) follows the above-mentioned
climate normals, but with one important exception. An unusual
dry period occurred from mid-January 2014 to mid-March 2014
during which time only 2.2 mm of rainfall was measured on
8 February 2014 (the long-term monthly rainfall for February
is 160 mm). Temperatures (absolute humidities) were slightly
above (below) their long-term means for that time of the year
(Figure 1).

3.2. External parameters

Each land-surface model (including the urban parametrization)
is supplied with a specific set of global/regional land-cover
characteristics. While these datasets are interchangeable between
models, each specific model normally uses a ‘native’ database.

SURFEX uses the global 1 km ECOCLIMAP database derived
from land-cover maps and satellite data (hereafter referred to as
MA03) in which each pixel is assigned one of more than 550
land cover types, each associated with a set of parameter values
needed by the surface models (Masson et al., 2003). Parameters
include the fractional coverage of each main surface type, thermal
and radiative characteristics of buildings, walls and roads, and
characteristics of the plant functional types (Masson et al., 2013,
give details). The 1 km MA03 grid cell size matches that of the
source area of the turbulent flux measurements which during
daytime (night-time) extends to a maximum of 500 (1000) m
(Figures 1 in Velasco et al., 2013; Roth et al., 2017). The MA03
values for the corresponding grid cell is 60% urban, equally
divided into buildings and impervious roads. The remainder of
the grid cell consists of broadleaf evergreen tropical trees (20%)
and C4 grass (20%). The mean building height is 10 m, with a
height-to-width (H/W) ratio of 0.21. Additional details on the
total roof, wall and road thickness, thickness of each individual
sub-unit layer and radiative and thermal properties are provided
in Table 1.

For CLMU, the urban surface properties are taken from Jackson
et al. (2010), who provide a global region-specific dataset on urban
extent, density, geometry, thermal and radiative characteristics.
This is the native generic dataset used for CLMU in global and
regional climate studies (e.g. Oleson et al., 2010a, 2013), and is
hereafter referred to as JA10. According to this dataset, the urban
fraction of the corresponding TK grid cell is ∼31% of which 60%
is covered by buildings (roofs), 25% by impervious roads and
15% pervious roads. The vegetation consists mainly of broadleaf
evergreen trees with a smaller fraction of broadleaf deciduous
trees, C4 grass and C3 crops. The building height and H/W ratio
are 30 m and 1.2, reflecting a higher density urban environment
than is actually present (Table 1).

The reference parameter list (hereafter referred to as REF)
is compiled to provide the most realistic description of the TK
area surrounding the flux tower (section 3.1 and Table 1). The
typical building envelope of the low-residential houses in the area
was provided by experts of the National University of Singapore,
Department of Architecture. The most common wall material is
a double brick layer without any cavity and white plaster on the
inside and outside. The roofs generally consist of the following
four layers: ceramic tiles, aluminium foil, an air gap and plaster.
The typical thickness of these layers and the radiative and thermal
characteristics (Table 1) for each of the materials are taken from
the materials library of the Autodesk Ecotect analysis software
(Tools for Sustainability, 2012).

In TERRA URB the urban land-cover tile is considered 100%
impervious (Wouters et al., 2015). In order to obtain bulk
parameter values for roof, wall and road surfaces, the SURY
v1.0 parametrization was used to translate facet information
from MA03, JA10 and REF to bulk values. Here, the bulk
thermal parameter values take into account enhanced ground
heat transport and storage due to the increased contact surface
expressed by the surface-area index while radiative parameter
values consider multiple-facet radiative numerical experiments
for calculating the albedo reduction factor resulting from the
radiative trapping by the urban canopy (sections 2.1.1 and 2.1.2
respectively in Wouters et al., 2016). The resulting bulk values
are indicated in brackets in Table 1. These values are slightly
higher than those used in previous applications of TERRA URB
(Demuzere et al., 2008; De Ridder et al., 2012; Wouters et al.,
2015, 2016), but generally fit within the range of LCZ 3 provided
in Stewart and Oke (2012).

SUEWS uses the surface cover, morphological (building and
tree height) and radiative properties listed in Table 1. Thermal
properties for the built-up surfaces are taken into account via
the heat storage coefficients used in OHM (Table 1) (Grimmond
et al., 1991). For bare soil and vegetated surfaces, the default
model values are used (Järvi et al., 2011), except in the calculation
of surface conductance where the parameters from Ward et al.
(2016) are used.

4. Results

All models are evaluated using the idealized reference parameter
list (REF) (section 4.1); the impact of other external parameter
values and their interaction with varying ULSMs is described
(section 4.2) and the sensitivity with respect to the impervious
water storage and WVO is assessed (section 4.3). Due to the
similarity between the CLM and SURFEX models, their results
are generally discussed together and referred to as CLM/SURFEX.

4.1. Model evaluation using REF parameters

4.1.1. Overall performance

Evaluation metrics using the REF parameter values in Figure 2) are
based on 1 h periods using all (day- and night-time) data, except
for outgoing short-wave radiation K↑ for which only daytime
fluxes (K↑ > 0 W m−2) are used, and all weather conditions.
Further details on the statistical values for the simulations using
the REF parameter values are provided in Table S1.

Net all-wave radiation (Q*) is well represented by all models,
with an r2 and Sscore close to 1 and a RMSE varying between
16.6 (SUEWS) and 46.1 W m−2 (TERRA URB). Most models,
except SUEWS, tend to underestimate Q* with a maximum
MBE of −17.3 W m−2 for TERRA URB. Although the models
are provided with a reference list of external parameters, all
models except SUEWS have a RMSEs that is larger than RMSEu,
indicating issues with the model physics or the parameters used.
The underestimation in Q* for CLM/SURFEX and TERRA URB
is largely driven by an overestimation in outgoing long-wave
radiation (L↑). The overestimation of L↑ is further compensated
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by a slight underestimation of K↑ for all models except
TERRA URB. For Q*, RMSEs is larger than RMSEu for both
K↑ and L↑ for all models.

Model errors for the turbulent fluxes QH , and especially QE,
are larger than the radiative flux component errors. For QH ,
the Sscore of all models is larger than 0.8 while only SUEWS
reaches this Sscore threshold for QE. (Table S1 and Figure 2). Apart
from TERRA URB, all models have a positive bias for QH , up
to 9.3 W m−2 for CLM, but for all models, RMSEu is larger than
RMSEs. Model performance is poorest for QE with a maximum
r2 of 0.6 (for SUEWS) and RMSE of 41.7 W m−2 (SURFEX). The
overall magnitude of QE is too low for all models, but the RMSEu

is always larger than RMSEs, except for SUEWS.
Finally, the storage heat flux �QS is best modelled by SUEWS

which is surprising since SUEWS uses default values for OHM, not
specifically tailored towards the TK site (Table S1 and Figure 2).
It is the only model that has a lower systematic than unsystematic
RMSE and a Sscore above the threshold of 0.8. The other models
generally have a too low �QS and σ compared to the observations
with a RMSE up to 64 W m−2 for TERRA URB and a negative
bias up to −7.1 W m−2 for CLM/SURFEX.

4.1.2. Performance during day/night-time and specific weather
conditions

After stratifying these result for day/night-time and distinct
weather conditions, the largest biases generally occur at night-
time, except for QE and L↑ (Figure 3). For the latter, the large
RMSE errors for CLM/SURFEX and TERRA URB described
in section 4.1.1 are mainly due to high daytime RMSE
values. In contrast, SUEWS performs better with nRMSE =
0.4 W m−2/W m−2 and similar nRMSEs and nRMSEu values. The
nRMSE of the latent heat flux is slightly higher during the day
than at night, especially for CLM/SURFEX. For all models and
fluxes, nighttime nRMSEs is larger than nRMSEu except for L↑
of SUEWS.

Daytime (night-time) bias is largest for L↑ and QE (L↑, QH and
�QS) and all models generally have the same sign. Interestingly,
the direction of the bias is opposite between day and night,
except for QE, which is underestimated during both parts of

the day. Large differences can be seen for L↑, being strongly
positive during the day and negative during the night, especially
for CLM/SURFEX and TERRA URB (also section 2.3). This is
also reflected in the behaviour of QH and �QS. While during the
day too much heat is transported away from the surface via QH

instead of being released as QE or stored in the ground, at night
too much energy is stored in the ground via �QS, resulting in an
underestimation of QH . This is especially true for CLM/SURFEX
and TERRA URB and less accentuated for SUEWS. It is important
to note here that measurement errors are generally larger at night
(Best and Grimmond, 2015).

Time series of daily mean MBE for the 11 month period for
all models and fluxes are provided in Figure 4. The similarity
between CLM and SURFEX causes their time series (red and blue
lines) to overlap most of the time. Overall, the skill of all models
have a strong temporal variability, although some model/flux
combinations tend to maintain similar skill throughout. For
example, TERRA URB closely follows CLM/SURFEX for L↑
and �QS, while SUEWS often tends to have a very different
behaviour. At the start of the dry spell in mid-January, MBE
for L↑ drops for SUEWS while it slightly increases for all other
models. Simultaneously, the SUEWS bias for Q* increases, while
it remains at the same level for the other models. Finally, SUEWS
has a more strong positive bias during this dry period, which
is accompanied by an overestimation of �QS. The prolonged
period without precipitation is also accompanied by an observed
decrease (increase) in latent (sensible) heat flux. All models are
able to capture the slope of this decrease/increase, although the
absolute magnitude is underestimated, especially for the latent
heat flux.

To further evaluate the model performance under specific
weather conditions, the observation period is stratified into a two-
month dry period (between 15 January and 15 March 2014 and
wet period (15 November 2013 to 14 January 2014) (Figure 5).
Notwithstanding a few exceptions, all models perform better
during the wet than during the dry conditions. This is especially
the case for SUEWS, except for L↑. All other models have a
smaller difference between the dry and wet period for K↑ and L↑.
This is also reflected in the results for Q*. The inter-quartile range
(IQR) error variability for SUEWS is a lot smaller for L↑ and Q*,
spanning an error range of approximately 10 W m−2, while this is
always greater than 30 W m−2 for the other models.

TERRA URB and SUEWS have the best performance for QH

for the dry and wet period, with a MBE decreasing from −7.8 and
−5.8 W m−2 to −0.4 and 3.7 W m−2, respectively. For the latent
heat flux, the overall negative MBE remains, but is stronger during
the dry period than the wet period, even though the magnitude of
the flux is smaller during the dry period. This deterioration also
occurs in the RMSE components: all models (except SUEWS)
have a larger RMSEu than RMSEs, which is no longer the case
during the dry period. The performance of �QS for SUEWS
improves significantly during the wet period compared to the dry
period. Whereas, CLM/SURFEX and TERRA URB have a slight
decrease in MBE, but their Sscore is better for the wet than the dry
period (not shown).

4.1.3. Performance following a precipitation event

The ability of the models to predict the surface--atmosphere
exchange following precipitation is investigated using the nMBE
as a function of time (hours) since a precipitation event (Figure 6).
In total, 72 rainfall events (irrespective of intensity) followed by
at least 24 h without precipitation occurred.

For K↑, Q*, QH and �QS, the bias is mostly independent
of the time since a precipitation event, with an almost constant
small positive or negative bias depending on the model or flux
of interest (not shown). For L↑ and QE, SUEWS has an almost
constant positive and negative bias, respectively, irrespective of the
hours since the precipitation event. In contrast for TERRA URB,
CLM and SURFEX, the nMBE for L↑ more than doubles when
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comparing their skill directly after, and 24 h after, a rainfall
event. For QE, SURFEX and CLM behave similarly, with a peak
positive bias 1 h after a precipitation event, reducing to almost
0 W m−2/W m−2 after 6 h and further decreasing to a negative
normalized bias of −0.6 W m−2/W m−2 after 24 h. Stratifying
by accumulated rainfall totals (low, medium, high) in the 24 h
leading up to each precipitation event led to a similar relative
magnitude and sign of the biases as those in Figure 6 (not shown).

4.2. Inter-parameter list and inter-model variability

The overall influence of using different parameter lists for each
model is summarized in Figure 7. Similar to the evaluation of
the models using the REF parameter list, CLM and SURFEX
behave almost identically when using MA03 and JA10 and they
are discussed together. For CLM/SURFEX, altering the parameter
list settings to JA10 has the largest impact on L↑ and QE. For L↑,
biases in normalized RMSE and standard deviation are reduced
with no change in the correlation coefficient. For QE, the results
deteriorate with an increase in nRMSE. This is accompanied by
an improvement in correlation and deterioration in variance.
Other surface energy balance components are less influenced by
changing the parameter list. The results using MA03 are generally
within the range of results obtained using REF and JA10.

TERRA URB has a similar behaviour as the single-layer canopy
models CLM/SURFEX. The error for L↑ decreases when using the
JA10 parameter list instead of REF, while the correlation remains
constant and the standard deviation improves. Simultaneously,
the skill for QE deteriorates, while the underestimated variability
in REF is strongly overestimated using JA10. Since the SUEWS
model used its own thermal parameters which were not changed
between the simulations, this model has the smallest sensitivity to

changes in the parameter list, except for the latent heat flux. For
the latter, all skill scores deteriorate with a more than doubling of
the nRMSE and a large overestimation of the standard deviation
when using JA10. For TERRA URB and SUEWS the results for
the MA03 parameter list are again between those from REF and
JA10 (Figure 7).

To further investigate the parameter list versus inter-model
performance, the median and inter-quartile range (IQR) of
the hourly biases are analysed (Figure 8) individually for
each model and parameter list used. For K↑ (daytime only),
all model and parameter list combinations (except JA10 and
TERRA URB) indicate an underestimation, both in median and
IQR (Figures 8(a) and (b)). When using REF, the IQR is smaller
than for all other settings (∼6 W m−2 compared to ∼17 W m−2,
respectively). The underestimation of K↑ contrasts to an overall
daytime (night-time) overestimation (underestimation) in L↑. A
large difference between the interquartile ranges can also be noted.
During the day it reaches ∼40 W m−2 for the simulations using the
REF parameter list (Figure 8(a)), while it is only 10.6 W m−2 for
the SUEWS model using different parameter lists (Figure 8(b)).
At night, the differences are smaller with the largest (smallest)
median bias and IQR for the JA10 parameter list (SUEWS model)
(Figures 8(c) and (d)). The results for both K↑ and L↑ are also
reflected in Q*. During the day, most parameter list and model
combinations underestimate Q*, but overestimate during the
night. Again, the IQR is smallest for JA10 and SUEWS during
day- and night-time.

While the biases for the radiation fluxes are consistent between
parameter list and model groups, this is different for daytime
turbulent heat fluxes. The overestimation in QH using the REF
namelist is converted to an underestimation using JA10. This is
compensated by a strong increase in bias and IQR for the latent
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heat flux when moving from REF to JA10 (Figure 8(a)). The
results for each model using different parameter lists are more
consistent. All models underestimate QH while QE biases are
similar but slightly overestimated. During the night, the biases
are generally negative and small with a narrow distribution. Best
results for night-time QH are obtained with TERRA URB, while
for QE the bias distribution is almost identical for all models
(Figures 8(c) and (d)). Finally, the daytime storage heat flux
has a similar bias behaviour across parameter lists and models,
generally being underestimated, except for SUEWS. During the
night, �QS is most problematic with a median overestimation of
at least 18.5 W m−2 (SUEWS). IQR is also larger than all other
fluxes, ranging up to 24 W m−2 (SUEWS).

Figure 9 confirms that generally the best model results are
obtained for Q*, K↑ and �QS, and the worst for L↑ and QE

with nMBE values larger than 1. Especially for QE (and to a
lesser extent for QH and L↑), it is striking that the sign and
magnitude of the error depend more on the choice of parameter
values rather than choice of model itself. For example, the model
results using JA10 strongly overestimate the latent heat flux, while
an underestimation is observed when using REF. Here, the best
results are obtained for the models using the MA03 parameter
list. SUEWS-JA10 ranks best in terms of K↑ but simultaneously
performs worst for QH and QE. CLM-MA03 ranks best for QH

and QE but performs poorly for K↑, L↑ and �QS. In addition,
rank numbers for CLM and SURFEX are in most cases only
one number apart from each other, which again confirms their
similarity noted above (when using the same parameter list
settings). Finally, the model, parameter list and their averages do
not necessarily perform better than their individual counterparts,
although this result is very much dependent on the flux of
interest. The simple model averaging solution (same weight for
each member, MmPl – Multi-model and Parameter list) provides
average rankings from 6 for Q* to rank 11 for L↑ and QH .
Additional tests using the reliability ensemble averaging (Miao
et al., 2014), which uses a weighted average of the ensemble
members based on the reliability of its members, did not result in
a better ensemble performance (not shown).

4.3. Sensitivity to the treatment of impervious water storage and
water vapour opacity

Given the similarity between CLM and SURFEX, the SID
framework described in section 2.2 is illustrated for CLM
only (note that the SID formulation is already included by
default in TERRA URB). From Figure 10 it is clear that the

alternative representation of water puddles on the impervious
surface has a strong impact on the modelled QE. Both the peak
overestimation until 6 h after such a precipitation event as well as
the underestimation in the last 6 h of this 24 h period is strongly
reduced (compare Figure 10 with Figure 6). In addition, the SID
approach positively impacts the full-period error statistics for K↑,
L↑, QH and QE. At the same time, there is a trade-off in skill with
a slightly worse performance for Q* and �QS (Table S2).

The sensitivity of the modelled L↑ on the effect of WVO is
tested for CLM/SURFEX and TERRA URB. The error statistics for
L↑ (Table S3) compared to the error statistics of the default REF
simulations (Table S1) are improved. For all models, the Sscore is
larger than 0.9 which is now in line with the default SUEWS model
performance. The RMSE is reduced from ∼30 to ∼5 W m−2. The
large gap between the systematic and unsystematic component of
the RMSE in the default setting is now almost negligible for the
WVO simulations.

As the WVO effect depends on atmospheric humidity levels,
the WVO results are tested for the dry and wet periods discussed in
section 4.1.2. During the dry period, the night-time negative bias
is completely removed, while the strong daytime overestimation
(∼80 W m−2) becomes a small underestimation (∼10 W m−2)
(Figure 11(a)). For the wet period, the WVO correction results in
a complete removal of the bias throughout the day (Figure 11(b)).

Finally, as the skill of the models in representing L↑ is a
function of hours since a precipitation event (Figure 6), the
combined effects of SID and WVO are illustrated for CLM
in Figure S1. Without taking into account WVO, there is no
systematic improvement in modelled L↑. Introducing WVO has
the largest impact and supports the results described above: the
modelled L↑ now closely follows the observed L↑ dynamics in
the 24 h after the selected rainfall events by removing the positive
biases at the beginning and end of this 24 h period. Outside of
these 24 h rainfall periods, the SID approach only has a minor
effect on the evaporation.

5. Discussion and conclusions

The present study provides the first comparative offline evaluation
for a tropical residential neighbourhood (Telok Kurau, Singapore)
using four urban land surface models. These ULSMs include the
bulk scheme TERRA URB and three models of intermediate
complexity, viz. CLM, SURFEX and SUEWS. All simulations are
performed using three different external parameter lists which
include the global region-specific Jackson et al. (2010) dataset,
the ECOCLIMAP database and a reference parameter list derived
from expert knowledge and Tools for Sustainability (2012).

The ULSMs under investigation have been evaluated
extensively in mid- and high-latitude cities, and are therefore
potentially optimized to these regions. Encouragingly, our results
using the best available external parameters (REF) align well with
previous findings. For example, the second phase of the PILPS-
urban project (targeting a suburban site in Melbourne, Australia,
characterized by a temperate oceanic climate) found that L↑ is
overall not as well modelled as K↑ and that Q* is modelled
better than either K↑ or L↑ (Grimmond et al., 2011). This is
true also for the current model evaluation over Telok Kurau.
In addition, L↑ and QE are identified as the most problematic
fluxes, which is again in agreement with the findings of the urban
intercomparison project PILPS-Urban (Grimmond et al., 2011;
Best and Grimmond, 2015).

The performance of varying parameter list and model
combinations largely depends on the respective combination
and flux of interest. The outgoing long-wave and latent heat
fluxes are the most sensitive to changes in the parameter list,
but with some exceptions. Since L↑ in SUEWS depends on the
forcing temperature T, the use of a different parameter list has
almost no impact. Whereas for the SUEWS QE, the impact of the
external parameters is largest (compared to the other models).
For all models, using the JA10 parameter list results in strong

c© 2017 Royal Meteorological Society Q. J. R. Meteorol. Soc. 143: 1581–1596 (2017)

wileyonlinelibrary.com
wileyonlinelibrary.com


Urban Canopy Models and External Parameters Sensitivity 1591

CLM(a) (b)

(c) (d)

Normalized RMSE (inner rings)

N
o
rm

a
liz

e
d
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

0.5

1

1.5

2

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

C
orrelation

REF

JA10
MA03

K
L
Q
QH

QE

QS

SURFEX

Normalized RMSE (inner rings)

N
o
rm

a
liz

e
d
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

0.5

1

1.5

2

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

C
orrelation

REF

JA10
MA03

K
L
Q
QH

QE

QS

TERRA_URB

Normalized RMSE (inner rings)

N
o
rm

a
liz

e
d
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

0.5

1

1.5

2

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

C
orrelation

REF

JA10
MA03

K
L
Q
QH

QE

QS

SUEWS

Normalized RMSE (inner rings)

N
o
rm

a
liz

e
d
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

0.5

1

1.5

2

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

C
orrelation

REF

JA10
MA03

K
L
Q
QH

QE

QS

Figure 7. As Figure 2, but separately for each model – (a) CLM, (b) SURFEX, (c) TERRA URB, and (d) SUEWS – using three parameter lists (indicated by different
symbols) as summarized in Table 1. [Colour figure can be viewed at wileyonlinelibrary.com].

negative (positive) bias for QH (QE). The opposite occurs when
using the REF parameter list, while using MA03 provides results
which are between the former two. The most significant difference
between these parameter lists is the amount of urban fraction,
which is 30.8, 60 and 85% for JA10, MA03 and REF, respectively.
The present results suggest a significant impact of this value but,
similar to findings in Loridan and Grimmond (2012), the use of
a site-specific urban fraction does not always yield the best model
result for QH and QE.

Combining all model and parameter list performances suggests
that the error statistics tend to be more dominated by the
choice of external parameter values than the choice of model
(structure, parametrizations, etc.). For example, the variability
between all models driven by one parameter list is often
smaller than the variability of one model driven by different
parameter lists. Yet, the multi-parameter list and/or multi-
model averages do not necessarily outperform each other or
the individual realizations, a result, however, that very much
depends on the flux of interest. If the focus is on a robust
representation of the surface energy balance at an aggregated
neighbourhood scale, a simple representation (with a limited

number of parameters) such as TERRA URB may be sufficient.
Such a scheme is also advantageous in terms of a lower
computational cost; bulk parameters are determined beforehand
based on detailed radiation model studies, hence avoiding the
radiation calculation during the simulation. But, as stated in
Best and Grimmond (2015), such representations might not have
the physical requirements for more advanced applications such as
street-level heat stress studies that benefit from detailed in-canyon
radiation information (Buzan et al., 2015).

The humid tropical setting of this residential site together
with the exceptional two-month dry period allowed for a
more in-depth evaluation of the models’ performances during
specific weather conditions. First, results vary across models and
fluxes considered, but overall their skill deteriorates during dry
compared to wet conditions. While this information is valuable
in itself, it might have implications for e.g. urban heat island
and heat stress studies. Fischer and Schär (2010) and Oleson
et al. (2015) clearly pointed out that additional heat exacerbates
heat stress, morbidity and heat-related mortality, shown to be
higher in urban environments during heat waves. Such episodes
manifest themselves during heat-wave periods that are generally
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characterized by dry conditions. An inadequate representation of
the energy balance components during such events might lead
to a misrepresentation of surface and canyon air temperatures
(as well as e.g. humidity), in turn leading to incorrect heat stress
metrics (e.g. Buzan et al., 2015).

Second, all models reproduce the observed decrease in QE

during the exceptional dry period. Yet the magnitude of the
modelled latent heat flux is underestimated (stronger during
the dry period than in the wet period). When representing the
modelled latent heat flux skill as a function of dry hours since a set
of precipitation events, SURFEX and CLM show an interesting
behaviour: both models overestimate the latent heat flux until
6 h after these events followed by an underestimation in QE. This
‘peak’ in the first 6 h resembles the peak of the ‘PTEB’ simulation
displayed in Figure 5 of Wouters et al. (2015). To address this, the
SID approach assuming a depth distribution of water reservoirs
on the impervious surface was proposed. This is illustrated in the
current study by increasing the maximum water ponding depth
wm from 1 to 1.31 kg m−2 and adding a maximal evaporating sur-
face fraction parameter (δm = 0.12), as was estimated by Wouters
et al. (2015). Our results indicate that this framework is both able
to alleviate the evaporation peak in the first 6 h after rainfall, as
well as the error statistics over the full period. Although the SID
and water storage parameters wm and δm were derived and eval-
uated by Wouters et al. (2015) over Toulouse (France) and Basel
(Switzerland) respectively, the values are shown to be a good first
approximation for tropical Singapore. Given that this approach
provides a more physical basis for the maximum water storage wm

compared to the currently used arbitrary constant of 1 kg m−2,
it is advised to integrate and further develop the SID framework
and the water-storage parameters in future urban model updates.

This finding contributes to the ongoing efforts in improving
the often inadequate representation of the urban water budget
and the latent heat in ULSMs (Grimmond et al., 2010, 2011).
Consequently, this result supports a better assessment of urban
adaptation strategies such as e.g. climate- and water-sensitive
urban design and green urban infrastructure (Starke et al., 2010;
Coutts et al., 2013; Demuzere et al., 2014a, 2014b); and is relevant
for improving the performance of numerical meteorological and
climate models (Wang et al., 2013; Prein et al., 2015). Especially
for tropical (humid) regions, such advancements are critical
for a better assessment of e.g. the two-way interaction between

urbanization and the initiation of thunderstorms and their socio-
economic consequences (Haberlie et al., 2015; Thiery et al., 2015,
2016).

Third, L↑ results indicate a distinct difference between SUEWS
and the three other models. CLM/SURFEX and TERRA URB are
not only characterized by a large (positive) bias in L↑ during the
day turning negative at night, but also by an increasing bias in L↑
during the dry period. In contrast, SUEWS has a small overall bias
in L↑ which decreases during the dry period. A reason for this
different behaviour can be found in the way the models calculate
L↑. In SUEWS, the radiative flux components are derived from
the incoming short-wave solar radiation using the net all-wave
radiation scheme (NARP; Loridan et al., 2011). In the latter, L↑
depends on the forcing temperature T and a correction factor
that takes into account the differences between the radiative
temperature of the surface and T. This is clearly different from
the other models, in which emitted long-wave radiation is a direct
function of modelled surface temperature and emissivity. When
these models are evaluated in an offline setting, we hypothesize
that neglecting the absorption and emission by water vapour
(water vapour opacity effect, WVO) leads to an (artificial) poor
representation of modelled L↑ compared to observations from
a micrometeorological tower that do register these radiative
interactions. This is illustrated in the current study by applying
the WVO framework developed by Wouters et al. (2015) to
TERRA URB and CLM/SURFEX. While the REF-driven baseline
simulations had a RMSE >30 W m−2 and Sscores below 0.7, the
simulated L↑ corrected for WVO reduces the RMSE to ∼5 W m−2

and Sscores >0.9, in line with the results obtained for SUEWS.
All of the above underlines the need to continue our efforts in

developing and evaluating ULSMs which can ultimately support
the development of urban climate adaptation strategies for
(sub)tropical regions (and beyond). When model developments
are tested offline using observational datasets, one needs to ensure
that there is no mismatch between what is actually measured
and modelled (cf. water vapour opacity effect). In addition,
future model developments should focus not only on integrating
more physically based characteristics in urban canopy models,
but also on the correct representation of urban morphology
and thermal and radiative characteristics. In terms of urban
characteristics, the correct representation of the urban extent, and
more specifically the impervious fraction, should be a primary
concern when studying the urban impact on the atmosphere
at the local, regional or global level. For example, Schneider
et al. (2010) note an order of magnitude difference between the
global urban extent (expressed in km2) derived from different
global products. In addition, Nordbo et al. (2015) emphasize
how, within the the urban extent, the amount of vegetation also
plays a key role in urban climate simulations. In this respect, the
‘World Urban Database and Access Portal Tools’ (WUDAPT)
framework (Bechtel et al., 2015; See et al., 2015) is likely a
promising tool. Herein, consistent data are collected at various
stages, with level 0 being the Local Climate Zones (LCZs; Stewart
and Oke, 2012) and higher level products providing more specific
parameters about urban form (canyon height-to-width ratio,
building/canyon height), built materials and function. Since the
LCZ classifier uses Landsat 8 red, near-infrared and thermal bands,
available at 30 m horizontal resolution, the resulting products can
be expected to provide a detailed, globally available consistent and
comprehensive dataset on the urban landscape with respect to its
canopy layer climate (Bechtel et al., 2015; Alexander et al., 2016a).

Finally, future ULSMs evaluations should not only continue
for different background climates but also for specific weather
conditions within these climates (e.g. Ward et al., 2016). Where
possible, the evaluation procedure should aim at an extended
multi-variable model approach. Here, the use of e.g. surface
temperature measurements either from infrared thermometers
or thermal infrared satellite data (e.g. Xu et al., 2008; Parlow et al.,
2014; Rayner et al., 2014; Zhao et al., 2014; Wouters et al., 2016)
and soil moisture profiles sampled from vegetated or bare soil
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fractions in an urban environment (e.g. Demuzere et al., 2014a)
might provide more information about the drivers of error in the
modelled surface energy balance components.
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surface interception distribution approach (CLM-SID). A better
performance for CLM-SID than the default CLM version listed
in Table S1 is indicated in bold.
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TERRA URB after applying the water vapour opacity framework
discussed in section 2.3. All models are driven with the REF
parameters (Table 1) and statistics are derived from all hourly
timesteps for the full period.
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