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Abstract The double Intertropical Convergence Zone (ITCZ) syndrome still affects all the models that6

participate to CMIP5 (Coupled Model Intercomparaison Project, phase 5). As an ensemble, general circu-7

lation models have improved little between CMIP3 and CMIP5 as far as the double ITCZ is concerned.8

The aim of this study is to investigate the respective roles of coupled ocean-atmosphere and large-scale9

atmospheric mechanisms in the double ITCZ problem. The SST contribution is examined using the THR-10

MLT index (Bellucci et al, 2010), which combines biases on the representation of local SSTs (MLT) and the11

SST threshold leading to the onset of ascent (THR) in the double ITCZ region. We introduce a metric of12

the model misrepresentation of the relationship between large-scale circulation and convection, that we call13

”Combined Precipitation Circulation Error (CPCE)”. It measures the combined biases on the simulated14

frequency of occurrence of vertical-motion regimes and on the rainfall magnitude simulated in each dynam-15

ical regime in the tropics. A linear regression analysis shows that most of the double ITCZ spread among16

CMIP5 coupled ocean-atmosphere models can be attributed to coupled processes, and that the interaction17

between precipitation and large-scale dynamics explains a significant fraction of the bias in these models,18

as well as in the atmosphere-only models.19
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Cedex 01, France.

E-mail: boutheina.oueslati@meteo.fr.

Manuscript
Click here to download Manuscript: manuscript.tex 
Click here to view linked References

http://www.editorialmanager.com/clidy/download.aspx?id=134767&guid=2233887c-2acc-41d3-a012-6c3ea125d2ad&scheme=1
http://www.editorialmanager.com/clidy/viewRCResults.aspx?pdf=1&docID=3733&rev=0&fileID=134767&msid={7B9901CE-C4A6-4104-806A-E8E87BF41752}


2

1 Introduction21

Most current general circulation models (GCMs) still suffer from the double intertropical convergence zone22

(ITCZ) syndrome (Mechoso et al, 1995; Dai, 2006). They fail to simulate the position of the ITCZ north of23

the equator year-round. Instead, they produce a second maximum of precipitation south of the equator in24

the eastern Pacific during at least half of the year, whereas it is only observed during boreal spring (Hubert25

et al, 1969; Zhang, 2001). The double ITCZ bias also affects the central Pacific and it can be connected to26

the simulation of a too-zonally elongated South Pacific Convergence Zone (SPCZ).27

Both atmospheric and coupled ocean-atmosphere processes play an important role in controlling the ITCZ28

location. The Sea surface temperature (SST) affects convection by supplying heat and moisture to the29

atmospheric column through the turbulent surface fluxes, and by creating low-level convergence through30

its gradients (Lindzen and Nigam, 1987; Back and Bretherthon, 2008; Oueslati and Bellon, 2013a). The31

spatial distribution of SST is however poorly simulated in coupled ocean-atmosphere GCMs (OAGCMs),32

with a positive SST bias over the southeastern Pacific and an excessive equatorial cold tongue extending33

too far west in the Pacific. These biases are attributed to coupled ocean-atmosphere feedbacks such as34

the SST-wind-induced surface fluxes feedback, the SST-stratus feedback and the SST gradient-trade wind35

feedback associated with vertical upwelling (Lin, 2007).36

Together with the SST’s control, atmospheric mechanisms are crucial in determining the ITCZ location.37

Because the diabatic heating associated with convection changes the pressure gradients, deep convection38

forces circulations. Vice-versa, low-level convergence can provide the humidity necessary for convection,39

so that the feedbacks between dynamics and moist thermodynamics are instrumental in controlling the40

precipitation pattern. Based on the conditional instability of the second kind (CISK) theory (Charney,41

1971) and the associated wave-CISK mechanisms (Holton et al, 1971; Lindzen, 1974; Hess et al, 1993), early42

studies emphasized the role of convection-large-scale convergence feedback to explain the ITCZ location.43

Atmospheric dynamics promote convection through large-scale upward motions, associated with moisture44

convergence, but it can also suppress convection through large-scale subsidence (Lau et al, 1997; Xie et al,45

2010). Subsequent studies highlighted the importance of the interaction between convection and its large-46

scale environment on the basis of the quasi-equilibrium theory (Arakawa and Schubert, 1974; Emanuel,47

1994). According to this theory, both dynamical and thermodynamical processes control the convective48

activity and, thus, the ITCZ location. In particular, Numaguti (1993) showed that the ITCZ structure is49
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sensitive to the surface-flux parameterization and Liu et al (2010) associated the double ITCZ obtained50

in aquaplanet settings with the wind-evaporation feedback. The quasi-equilibrium theory per se does not51

provide a systematic mechanism of interaction between precipitation and dynamics.52

The ITCZ pattern is very sensitive to the deep-convection scheme and parameters because they determine53

the response of the convection to given large-scale environment and forcings, and also because they control54

the dynamic response to convection through the vertical profile of convective heating. Rain reevaporation55

(Bacmeister et al, 2006), cold top and downdrafts (Oueslati and Bellon, 2013a) and lateral entrainment56

(Chikira, 2010; Hirota et al, 2011; Oueslati and Bellon, 2013b) can all have an impact on the precipitation57

pattern. In particular, sensitivity studies to convective entrainment using the CNRM-CM5 hierarchy of58

models show that, in that model, the double ITCZ bias is associated with an error in the probability59

density function (PDF) of mid-tropospheric vertical wind resulting from feedbacks between dynamics and60

convection (Oueslati and Bellon, 2013b).61

The purpose of this study is to quantify the respective roles of SST and large-scale dynamics in the62

double ITCZ problem in OAGCMs and, when available, corresponding atmosphere-only GCMs (AGCMs)63

participating to CMIP5 (Coupled Model Intercomparaison Project, phase 5). The SST contribution is64

analyzed following Bellucci et al (2010). The large-scale atmospheric contribution is examined using the65

regime sorting methodology developed by Bony et al (2004). These two contributions are quantified based66

on a linear regression analysis. Using this statistical method, we attempt to show that the double ITCZ67

bias is associated not only with biases of the local SSTs (Bellucci et al, 2010) but also with the systematic68

errors affecting the large-scale atmospheric circulation.69

The paper is structured as follows. In section 2, we introduce the models used for this study. In section70

3, we investigate the CMIP5 OAGCMs systematic errors in tropical precipitation. Section 4 quantifies the71

role of SST and associated coupled ocean-atmosphere feedbacks in the double ITCZ syndrom. Section 572

investigates the contribution of precipitation/dynamics interaction to this systematic bias. The respective73

roles of the coupled ocean-atmosphere processes and atmospheric precipitation/dynamics processes are74

quantified in section 6. Summary and conclusions are given in section 7.75
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2 CMIP5 models76

We use the monthly outputs of 21 years (1979-1999) of the reference historical simulations performed for77

CMIP5 (referred to as CMIP). They are currently available for 17 OAGCMs. In addition, we use the cor-78

responding atmosphere-only simulations (commonly referred to as Atmospheric Model Intercomparaison79

Project (AMIP) simulations), with prescribed SST and interactive continental surfaces. These AMIP sim-80

ulations are available for 13 AGCMs out of the 17 OAGCMs. Table 1 summarizes the characteristics of the81

models used in this study with their names and acronyms, their horizontal and vertical resolutions and a82

brief description of their deep convection schemes. For simplicity, we refer to each model by the name of83

its institution in figure legends.84

Model results are compared with observational datasets and reanalyses (referred to as OBS in figure leg-85

ends). In particular, the Global Precipitation Climatology Project (GPCP) version 2 precipitation dataset86

(Adler et al, 2003) is used for precipitation. The 40-yr ECMWF Re-analysis (ERA40) is used for the87

mid-tropospheric vertical speed ω500 fields. The global Hadley Centre Global Sea Ice and Sea Surface88

Temperature (HadISST) analyses (Rayner et al, 2003) are used for sea surface temperatures (SST).89
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3 Precipitation patterns in CMIP5 OAGCMs90

3.1 Annual mean precipitation91

Figure 1 shows the annual mean precipitation over the period 1979-1999 from GPCP v2 precipitation92

dataset Adler et al (2003) and 17 CMIP5 OAGCMs. All the models still produce the double ITCZ bias to93

some extent, with excessive precipitation south of the equator in the Pacific Ocean: the SPCZ is too-zonally94

elongated and a spurious ITCZ is simulated in the Eastern Pacific. In some models (e.g., GISS-E2-R and95

MRI-CGCM3), a double ITCZ pattern is also evident over the tropical Atlantic Ocean. Other model defi-96

ciencies still persist, including the excessive precipitation over the Maritime Continent, Indien Ocean, and97

within the Pacifc ITCZ, and the insufficient precipitation over the equator in the Pacific.98

To quantify the double ITCZ bias over the tropical Pacific in GCMs, Bellucci et al. (2010) proposed99

a Southern ITCZ (SI) index, computed as the annual mean precipitation over the Double ITCZ region100

(20◦S-0◦, 100◦- 150◦W, referred to as the DI region). Figure 2 compares the SI index calculated for101

CMIP3 and CMIP5 models. It appears clearly that the double ITCZ bias is still present in all models.102

Only four modeling groups out of the 13 common ones between CMIP3 and CMIP5 improved their simula-103

tion of the annual mean precipitation in the southeastern Pacific. For the IPSL-CM5A, MPI-ESM-LR and104

CNRM-CM5, the improvement results in large part from an increase in resolution: the vertical resolution105

has been increased in IPSL-CM5A-LR and MPI-ESM-LR compared to the models in the CMIP3 gener-106

ation, the horizontal resolution has been increased in CNRM-CM5 and both the horizontal and vertical107

resolutions have been increased in IPSL-CM5A-MR, but the convection parameterization in these models108

has not been significantly altered. IPSL-CM5B-LR and NCAR-CCSM4 also show an improvement in the109

SI index, and it can be explained by improvements of the existing parameterization of deep convection110

(Grandpeix and Lafore (2010) and Grandpeix et al (2010) for IPSL-CM5B-LR ; Neale et al (2008) for111

NCAR-CCSM4). In particular, in NCAR-CCSM4, two changes were made within the previous Zhang and112

McFarlane (1995) convection scheme. One is the inclusion of the effects of deep convection in the momen-113

tum equation (Richter and Rasch, 2008). The second is a modification of the calculation of convective114

available potential energy (CAPE), that has been reformulated to include more realistic dilution effects115

through an explicit representation of entrainment (Neale et al, 2008). Taking into account entrainment116

in cumulus parameterization strengthens the sensitivity of convection to the free-tropospheric humidity,117
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resulting in a more constrained but vigourous precipitation (Neale et al, 2008; Oueslati and Bellon, 2013b).118

Compared to its CMIP3 version, MRI-CGCM3 no longer uses monthly climatological flux corrections, and119

this could explain the increase in SI index shown in figure 2.120

Figure 3 shows the SI index computed from both CMIP5 OAGCMs and AGCMs. The double ITCZ bias is121

present in AMIP simulations. However, for the majority of models, its amplitude is smaller than in CMIP122

simulations. This is particularly the case of BCC-CSM1-1, GFDL-ESM2M and MRI-CGCM3. It appears,123

therefore, that coupled ocean-atmosphere feedbacks are still responsible for most of the double ITCZ bias124

in the East Pacific, maybe even more so than in the previous generation of models (Lin, 2007). This con-125

firms that alleviating the double ITCZ bias in AGCMs is insufficient to solve the double ITCZ problem126

in OAGCMs as was suggested by the spread in the sensitivity of AGCMs and OAGCMs to convective127

entrainment (Oueslati and Bellon, 2013b).128

3.2 Mean seasonal cycle129

Figures 4 and 5 show the seasonal cycle of monthly precipitation averaged over two longitude sectors of the130

Pacific ocean from GPCP and for CMIP5 models. The seasonal cycle of the precipitation in the Eastern131

Pacific (80W-120W) has improved in some OAGCMs, as shown in Figure 4, compared to Dai (2006) and132

De Szoeke and Xie (2008) . De Szoeke and Xie (2008) divided the CMIP3 model into three main categories133

based on their seasonal cycle of precipitation. The first collects models displaying a persistent double ITCZ134

error in which rain persists too long in the Southern Hemisphere. The second collects models with an ITCZ135

and an SST maxima that cross the equator following the seasonal march of the insolation maximum. The136

third group collects models that are in qualitative agreement with the observed seasonal cycle, with the137

dominance of the northern ITCZ from May to December and the double ITCZ structure in March and April138

(see fig. 4 GPCP). This classification is still relevant for CMIP5 models, with improvements in some models.139

In particular, CNRM-CM5 and INMCM4 no longer simulate a double ITCZ all year-round (De Szoeke and140

Xie, 2008), but simulate a single ITCZ that moves across the equator following the solar forcing, similarly141

to the majority of CMIP5 models (IPSL-CM5, NCC-NorESM1-M, MPI-ESM-LR, CCCma-CanESM2,...).142

Two models (GISS-E2-R and IAP-FGOALS-g2) still exhibit a persistent double ITCZ error, with precip-143

itation persisting year-round in the Southern Hemisphere. Three models (MIROC5, CSIRO-Mk3-6-0 and144

MOHC-HadGEM2-ES) reproduce qualitatively the observed seasonal cycle of precipitation. In MOHC-145
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HadGEM2-ES, however, the southern ITCZ is much more intense than in the observations (≃ 9 mm day−1
146

), explaining the increase of the SI index from CMIP3 to CMIP5 (see fig. 2).147

Over the Central Pacific (130W-170W), most of the models produce a persistent double ITCZ error with148

a southern rainbelt present throughout the year (see fig. 5). Only few models simulate qualitatively the149

seasonal cycle of the ITCZ, with no southern rainbelt in boreal summer (MIROC5, IPSL-CM5). However,150

it still persists too long compared to observations. In this region, the bias of simulated precipitation is in151

fact connected to the simulation of a too-zonally elongated SPCZ.152

4 Coupled ocean-atmosphere contribution to the double ITCZ bias153

In the tropics, organized convective activity is often colocated with warm SSTs. Warm SSTs cause large154

turbulent surface fluxes that increase low-level moist static energy and are favorable for convection. The155

SST also has a non local dynamical effect through its gradient that creates low-level convergence (Lindzen156

and Nigam, 1987; Back and Bretherthon, 2008; Oueslati and Bellon, 2013a). The modulation of the SST157

through coupled ocean-atmosphere feedbacks is therefore crucial to the precipitation pattern.158

In this section, we focus on the role of the local SST control on precipitation, and particularly on the159

double ITCZ bias in southeastern Pacific in CMIP5 models, using the metrics proposed by Bellucci et al.160

(2010).161

4.1 Description of the Bellucci index THR-MLT162

The Bellucci et al. (2010) methodology is based on a regime-sorting analysis applied to SST in the DI region.163

The PDF of SST (bins of 0.5◦C) is computed over the DI region (see fig. 6a). The SST corresponding to164

the maximum of the PDF is identified as the most likely temperature (MLT) of the ocean surface in the DI165

region (Bellucci et al, 2010). The average ω500 is computed for each 0.5◦C SST bin over the DI region (see166

fig. 6b). An SST threshold (THR) corresponding to the SST at which ω500 (SST) changes sign is identified167

as the SST threshold leading to the onset of deep convection.168

The difference THR-MLT between this SST threshold (THR) and the most likely SST over the DI region169

(MLT) is used to quantify the combined error of SSTs and local convection-SST coupling. This index170

determines whether the simulated regional oceanic conditions are favorable for the onset of deep convection171

given the model regional relationship between SST and convection. Positive (negative) values of THR-MLT172
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correspond to models whose most frequent thermal conditions in the southeastern tropical Pacific are colder173

(warmer) than the deep convection threshold, producing therefore a less (more) pronounced double ITCZ174

(Bellucci et al, 2010).175

4.2 The THR-MLT index in CMIP5 models: comparaison with CMIP3 models176

Figure 6 shows SST PDFs (fig. 6a) and regime-sorted ω500 (fig. 6b) for the CMIP5 OAGCMs. Similarly to177

CMIP3 models, CMIP5 models exhibit lower THRs than the observed value (28◦C). However, the THR178

spread between CMIP5 models is smaller, within 27◦-28.5◦C range compared to 26◦-28.5◦C range for179

CMIP3 models (see fig. 6b). The reduction of the spread is due to the improvement of three models: IN-180

MCM4, CNRM-CM5 and MIROC5, in which the THR has improved (27.5◦C instead of 26.5◦C in CMIP3181

version). In particular, the more stringent threshold in MIROC5 might be explained by a modification in182

the parameterization of convective entrainment that tends to supress deep convection over dry, subsiding183

regions: Chikira and Sugiyama (2009) used an entrainment rate that depends on the buoyancy of the con-184

vective parcel, whereas the entrainment rate was originally uniform on the vertical.185

The model SST shows a variety of distributions (see fig. 6a). In particular, IAP-FGOALS-g2 produces an186

SST distribution in better agreement with the observations than in its CMIP3 version. This is likely to re-187

sult from improvements in the LASG/IAP Climate system Ocean Model (LICOM2), in the representation188

of some physical processes such as the vertical turbulent mixing, the solar radiation penetration and the189

mesoscale eddy parameterization as well as in the advection scheme (Liu et al, 2012).190

The strong relationship between the THR-MLT index and the double ITCZ error, established in CMIP3191

models (Bellucci et al, 2010), is also verified in CMIP5 models (see fig. 7), with positive THR-MLT cor-192

responding to low double ITCZ error (e.g., MIROC5, NCC-NorESM1-M, IPSL-CM5A-MR) and negative193

THR-MLT corresponding to strong double ITCZ error (e.g., INMCM4, GISS-E2-R, MRI-CGCM3). The194

two indexes’ correlation is -0.89, similar to the CMIP3 value of -0.84.195

This linear relationship can be written as a simple regression between the measured variable (SI) and the196

explanatory variable (THR-MLT) as follows:197

SI = α0 + α1 (THR−MLT ) + ǫ, (1)
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where α0 = SIOBS − α1(THR − MLT )OBS + ǫ0 is the intercept, α1 = −0.78 mm day−1 ◦C−1 is the198

regression coefficient and ǫ is the residual. α1 is statistically significant with a p value smaller than 10−4
199

using Student’s statistical test. The observed value is SIOBS−α1(THR−MLT )OBS = 2.1 mm day−1 and200

ǫ0 = 1.3 mm day−1 is the residual systematic error that is not accounted for by the error on THR-MLT.201

The regression results are summarized in Table 2.202

To measure the goodness of fit of the statistical model defined by Equation (1) (i. e. how well the regression203

line fits the set of data), we look at the adjusted R2 (R2)1, that is estimated at 0.7 for CMIP5 AOGCMs.204

The strong relationship between the SI and the THR-MLT points out the importance of the thermodynamic205

forcing on precipitation in the DI region. This forcing is largely determined by local thermodynamic206

instability associated with warm SST and characterizes the local impact of SST on precipitation and the207

associated coupled ocean-atmosphere feedbacks. Figure 8 shows that the intermodel spread of THR-MLT208

is mostly due to that of MLT, and that the inter-model spread of THR has reduced between CMIP3 and209

CMIP5 models (see also fig. 6b) ; this suggests some convergence of AGCMs. However, OAGCMs still210

present a wide spectrum of SST distributions due to the various configurations of ocean models and the211

variety of coupled feedbacks. These results explain the enhanced inter-model spread in SI index in the212

coupled ocean-atmosphere simulations compared to the AMIP simulations (see fig. 3).213

The relevance of THR-MLT highlights the local SST control on precipitation in CMIP5 models. However,214

it does not explain entirely the double ITCZ bias: the residual systematic error ǫ0 is significant. Also, since215

this index is mostly controlled by MLT, which is imposed in AMIP simulations, we can wonder whether216

this index can explain the spread in SI index in AMIP simulations. This will be investigated in section217

4.3. Finally, some models with the same THR-MLT index, have different SI indexes (see fig. 7, e.g., IPSL-218

CM5B-LR and GFDL-ESM2M) ; it would be interesting to identify the mechanisms responsible for this219

spread.220

1 The coefficient of determination R2 is the proportion of variability in a data set that is accounted for by the

statistical model. It is defined as: R2 =
∑

i(ŜIi−S̄Ii)
2

∑
i(SIi−S̄Ii)

2 = 1 −
∑

i(SIi−ŜIi)
2

∑
i(SIi−S̄Ii)

2 , where SI is the observed value, ŜI is

the predicted value by the regression model and S̄I = 1
n

∑
i SIi. R

2 is the proportion of variability in a data set

that is accounted for by the statistical model, that accounts for the number of explanatory variables in the model.

It is defined as: R2 = 1− n−1
n−p

∑
i(SIi−ŜIi)

2
∑

i(SIi−S̄Ii)
2 .
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4.3 The THR-MLT index in CMIP5 AGCMs221

In this section, we apply the same regime analysis on the available CMIP5 AGCMs to investigate whether222

the relationship between the SI and THR-MLT indexes is verified in these models.223

AMIP simulations are performed using observed SSTs as a lower boundary condition for the atmospheric224

model. All the models have, therefore, the same most likely thermal state MLT (see fig. 9a) ; a small225

difference in MLT can arise from the differing horizontal grids. The SST threshold THR for deep convection226

is still model-dependent. Vertical motions respond differently to imposed SST, resulting in a wide range of227

THR (see fig. 9b). THR-MLT is directly controlled by THR, in contrast with CMIP simulations in which228

it is strongly determined by model biases on SST (see fig. 8). The imposed oceanic conditions result in229

warmer THRs than in CMIP simulations and even than the observed THR for the majority of models (see230

fig. 9b). This suggests that ocean-atmosphere coupling has a positive feedback on convection, resulting in231

an easier onset of convection and a less constrained SST threshold in CMIP simulations (see fig. 6b).232

Figure 10 shows the relationship between the SI index and THR-MLT in AMIP simulations. Again, the233

linear relationship between these two indexes is evident, but it is not as strong as in OAGCMs (SI and234

THR-MLT are correlated at the -0.76 level and R2 is 0.5). The linear regression between SI and THR-235

MLT, described by Equation (1) is performed for AGCMs. α1 is statistically significant (the p value of the236

corresponding statistical test is about 10−3) and is estimated at −0.82 mm day−1 ◦C−1, similar to the237

estimation obtained for CMIP simulations. ǫ0 = 0.86 mm day−1 is the residual systematic error that is238

not accounted for by the error on THR-MLT. The regression results are summarized in Table 2.239

This regression shows that, even in the absence of coupled feedbacks, the THR-MLT index still contains240

some information on the SI index. This information results from the atmospheric mechanisms controlling241

THR among which feedbacks between precipitation and vertical motion play a prominent role. In the242

next section, we attempt to introduce a more complete measure of the error on the relationship between243

dynamics and precipitation and relate it to the SI index.244
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5 Large-scale atmospheric contribution to the double ITCZ245

5.1 Large-scale dynamics control on precipitation246

Large-scale circulation and precipitation interact strongly in the tropical atmosphere. On one hand, large-247

scale ascent is associated with moisture convergence and upward transport, both favorable for convection.248

On the other hand, large-scale subsidence, and sometimes horizontal advection, can suppress convection249

through the drying effect on the atmospheric boundary layer, that reduces its moist static energy (Lau250

et al, 1997; Xie et al, 2010), and on the free troposphere, that can damp the convective plumes through251

entrainment (Chikira, 2010; Hirota et al, 2011; Oueslati and Bellon, 2013b). Deep convection, in turn,252

modifies the temperature gradients through latent heat release in cumulus clouds (e.g., Gill, 1980) and253

convective cooling (Oueslati and Bellon, 2013a) ; the resulting pressure gradients force the large-scale cir-254

culation. The interaction between dynamics and precipitation is, therefore, at the heart of the atmospheric255

mechanisms that control the tropical precipitation patterns.256

Many observational studies have documented the relationship between precipitation and large-scale dy-257

namics. Analyzing the relationship between OLR (outgoing longwave radiation as a measure of convection)258

and SST, Lau et al. (1997) showed that the sensitivity of convection to local SST is strongly enhanced under259

strong large-scale upward motion within the 26-28◦C SST range. Above 28◦C, the intensity of convection260

is no longer dependent on the local SSTs, but it is more strongly controlled by the large-scale convergence261

(Graham and Barnet, 1987; Gutzler and Wood, 1990). In particular, a reduction in convection is observed262

in high SST ”hot spot” situations which is likely to be explained by large-scale subsidence forced by nearby263

or remotely generated deep convection (Lau et al, 1997).264

The sensitivity of convection to large-scale circulation is not well represented in GCMs. In fact, in the265

CMIP3 models the precipitation patterns follow the SST patterns too closely compared to observations,266

especially over the southeastern tropical Pacific (Lin, 2007). Hirota et al. (2011) argued that precipitation267

in models that overestimate precipitation in subsidence regions (e.g., the DI region) correlates strongly with268

SST and weakly with the large-scale circulation as diagnosed by ω500. The physical processes suppressing269

convection, that convey the influence of subsidence are still poorly represented in OAGCMs. In particular,270

the more realistic distribution of precipitation observed in both MIROC5 and NCAR-CCSM4 is attributed271

to a stronger circulation-precipitation interaction, resulting from modifications of the convection schemes,272
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that take into account the large-scale processes in the calculation of entrainment (in the case of MIROC5,273

Hirota et al, 2011) and CAPE-based closure (in the case of NCAR-CCSM4, Song and Zhang, 2009).274

Using sensitivity studies, Oueslati and Bellon (2013b) showed that the double ITCZ is associated with275

errors in the PDF of ω500 and the errors on the contribution of each ω500 regime to the total precipitation.276

On the basis of this and the aforementioned studies, we introduce a measure of the errors on this contri-277

bution as a measure of the error on the precipitation-circulation relationship.278

5.2 Combined Precipitation Circulation Error (CPCE) and the double ITCZ bias279

To study the precipitation-large-scale circulation coupling and its role in the double ITCZ bias, we use280

the sorting methodology of Bony et al. (2004) in which the monthly-mean mid-tropospheric (500hPa)281

vertical pressure velocity ω500 is used as a proxy for large-scale ascent (ω500 < 0) or subsidence (ω500 > 0).282

The columns of the tropical atmosphere over oceans (30◦S-30◦N) are sorted into 10hPa bins of ω500. The283

resulting PDFs of ω500 are shown in figure 11a for ERA40 and for CMIP5 AGCMs. We also compute284

the average precipitation for each ω500 regime in the observations and in AGCMs (see fig. 11b). The285

contribution of each vertical regime to the total tropical precipitation is then quantified by weighting the286

regime-sorted precipitation by the PDF of ω500. The resulting distributions show the contribution of each287

dynamical regime to the mean tropical precipitation (see fig. 11c).288

The CMIP5 AGCMs simulate a PDF of ω500 similar to the observed distribution in the tropics, with289

a dominance of subsidence regimes (see fig. 11a). Most models actually overestimate the maximum of290

occurence of weakly subsiding regimes. The others (CNRM-CM5 and INMCM4) overestimate the weakly291

ascending regimes, with hints of bimodality as documented in Oueslati and Bellon (2013b). In that study, a292

bimodal PDF of ω500 was attributed to feedbacks between large-scale circulation and deep convection that293

yield a strong double ITCZ bias. The models overestimate precipitation in all vertical regimes, particularly294

so in the ascending regimes (see fig. 11b). The largest contribution to observed precipitation in the tropics295

derives from weak-to-moderate ascent and weak subsidence, with a maximum for ω500 in the -30 to -296

10 hPa day−1range (see fig. 11c). The majority of CMIP5 AGCMs capture the observed dominance of297

precipitation in weak-to-moderate ascent and weak subsidence. However, most of them overestimate the298

contribution of these particular regimes to precipitation (e.g., INMCM4, CNRM-CM5, IPSL-CM5A-LR...).299

In order to quantify the model error in representing the relationship between tropical circulations and300
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precipitation, the normalized CPCE (Combined Precipitation Circulation Error) index is proposed as301

follows:302

CPCE =

√

∑

−80≤ω≤80(∆(PDFω × Pω))2

∑

−80≤ω≤80(PDFobs × Pobs)
(2)

where ω is the monthly-mean mid-tropospheric (500hPa) vertical pressure velocity ω500, PDFω is the

PDF of ω500, Pω is the average precipitation for each ω500 regime, Pobs and PDFobs are the observed

distributions and ∆ is the difference between the model and the observed distributions.

The purpose of the CPCE index is to quantify the errors in representing the interaction between precipita-

tion and large-scale circulation in the tropics in order to understand their influence on precipitation biases

in the DI region. To do so, the CPCE index should account for the large-scale properties of the DI region.

In fact, one important difference between the distribution of vertical speed over the tropical belt and that

in the DI region is the rare occurrence of strong ascending regimes (ω500 <-60 hPa day−1) in the latter.

Strongly ascending motions occur mostly within large regions of deep convection such as the warm pool and

monsoon region. Based on this observation, the CPCE is computed for vertical regimes whose frequency of

occurence is higher than 0.01 in the DI region, accounting, therefore, for regimes that are important in the

DI region and significant for the double ITCZ error. These regimes correspond to ω500 between -80 and 80

hPa day−1. Indeed, we tried to release this hypothesis and found that the results presented hereafter were

not as strong, due to the additional error and inter-model spread from the strongly ascending regimes that

are not relevant to the DI syndrom. Because they are infrequently observed, parameterized convection in

these regimes is poorly constrained, resulting in large biases and inter-model spread.

The relationship between the CPCE index and the double ITCZ error in AGCMs is shown in figure 12.

It appears that INMCM4 presents the largest CPCE index and is considerably distant from the rest of

the models. A careful analysis of residuals, leverage and Cook’s distance of the regression presented in the

Appendix objectively shows that INMCM4 is an outlier. Geoffroy et al. (2012) also diagnosed the anoma-

lous character of INMCM4 when analyzing the global thermal properties of CMIP5 models. It thus seems

reasonable to exclude INMCM4 in the following analyses.

A strong linear relationship between the CPCE and SI indexes can be seen in figure 12 and the correlation

between the two is 0.85 (slightly larger than the correlation between the SI and THR-MLT). The linear
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regression between the SI and the CPCE in AGCMs can be written as:

SI = α0 + α2 CPCE + ǫ, (3)

where α0 = SIobs + ǫ0, with ǫ0 = −0.25 mm day−1 and α2 = 14.6 mm day−1 . α2 is statistically303

significant (the p value of the corresponding statistical test is smaller than 10−3). The regression results304

are summarized in Table 3.305

The linear regressions described by Equations (1) and (3) show that in AGCMs, both THR-MLT and the306

CPCE can explain the spread in SI. Since AGCMs have the same SST forcing, both indexes are measures307

of the interaction between dynamics and precipitation. They are highly correlated at the -0.7 level and308

therefore carry overlaping information. However, comparing R2 between the two regression models, we can309

see that R2 in the regression model defined by Equation (3) is higher than that defined by Equation (1)310

(R2 = 0.7 instead of 0.5). Also, the unexplained bias in the regression defined by Equation (3) is smaller311

than the unexplained bias in the regression defined by Equation (1) (ǫ0 = −0.25 mm day−1 instead of312

0.86 mm day−1 ). Therefore, the SI spread between CMIP5 AGCMs appears better accounted for by the313

statistical model defined by Equation (3).314

To further clarify the relative roles contributed by large-scale dynamics (CPCE) and local SST (THR-315

MLT) on the double ITCZ bias (SI) in AGCMs and OAGCMs, the next section is dedicated to a regression316

analysis on both predictors.317

6 Respective roles of SST and circulation-precipitation interaction in the double ITCZ bias318

The interaction between SST, large-scale dynamics and precipitation is examined by performing a multiple319

linear regression of the SI on both THR-MLT and CPCE in a manner similar to Bellon et al. (2010):320

SI = α0 + α1 (THR−MLT ) + α2 CPCE + ǫ, (4)

where α0 = SIOBS − α1(THR − MLT )OBS + ǫ0 is the intercept, α1 and α2 are regression coefficients321

and ǫ is the residual.322

The statistical significance of the coefficients α1 and α2 is checked by Student’s statistical test of the null323

hypothesis H0 against an alternative hypothesis H1 defined as:324

H0 : αi = 0 (αj being estimated);325
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H1 : αi 6= 0 (αj being estimated);326

with (i,j)=(1,2) or (2,1).327

The results of the regression are summarized in Table 4.328

6.1 AGCMs329

The regression of the SI index is performed for AGCMs. Only α2 is statistically significant at the 98%330

confidence level (the p value associated to the statistical test is 0.02) and it is estimated at 10.6 mm day−1
331

. The p value on the regression coefficient for THR-MLT is superior to 0.05. The null hypothesis for α1 is332

therefore accepted and the regression model proposed by Equation (4) reduces to the one of Equation (3).333

This shows that the error on the SST threshold THR between ascending and subsiding regimes appears to334

provide information on the SI error that is included in the error CPCE on the distribution of the vertical335

regimes’ contribution to precipitation.336

6.2 OAGCMs337

6.2.1 The CPCE index in OAGCMs338

Dynamics-precipitation interaction is the driver of the double ITCZ bias in AGCMs. Given the unability

of THR-MLT to explain entirely the double ITCZ bias in OAGCMs, it seems interesting to investigate the

role of the large-scale atmosheric processes and see whether the CPCE provides additional information on

the SI index in OAGCMs.

The ω500 regime sorting approach is applied for CMIP5 models. The obtained distributions are shown

in figure 13. OAGCMs produce the same characteristics as the corresponding AGCMs in ω500 regime

frequency and precipitation magnitude for individual regimes (see figs. 11 and 13), with the exception

of IAP-FGOALS-g2 that slightly underestimates precipitation in strong ascent and overestimates precip-

itation in weak subsidence. Indeed, alike AMIP simulations, CMIP ones overestimate the contribution of

weak-to-moderate ascent and weak subsidence to the total tropical precipitation (e.g., INMCM4, GISS-E2-

R, CNRM-CM5...). These similar charateristics between the two model configurations reveal that errors on

the precipitation large-scale dynamics relationship is an intrinsic error of AGCMs essentially independent

of coupled feedbacks.
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Based on the shape of the weighted precipitation distribution, The CMIP5 models can be gathered into

three groups (Bellucci et al, 2010). The first collects the majority of models which capture the observed dom-

inance of precipitation in weak-to-moderate ascent and weak subsidence. The second group collects models

displaying two relative maximas, in both ascending and subsiding regimes (IPSL-CM5A-LR, IPSL-CM5A-

MR, MIROC5 and CSIRO-Mk3-6-0). The third group corresponds to models which exhibit a maximum

contribution to precipitation in subsiding regimes. This group only includes IAP-FGOALS-g2. Despite the

erroneous maximum, IAP-FGOALS-g2 produces a realistic representation of precipitation in regimes of

moderate and strong ascending motions.

The role of dynamics-precipitation interaction on the double ITCZ in OAGCMs is examined by displaying

the CPCE index as a function of the SI index (see fig. 14). Again INMCM4 is identified as an outlier (see

fig. 18a in the Appendix) and excluded from the following analyses. Unlike in the AMIP simulations, no

obvious link appears between the CPCE and the SI in OAGCMs. The correlation between the CPCE and

the SI is 0.3. By itself, the CPCE is unable to explain the inter-model spread of the double ITCZ bias in the

CMIP simulations. But it is interesting to investigate whether the CPCE provides additional information

to THR-MLT. The multiple linear regression of the SI on both THR-MLT and CPCE (described by Eq.

(4)) is thus performed.

In both cases, H0 can be rejected at the 95% confidence level. This shows that, in OAGCMs, THR-MLT

and the CPCE provide independent and complementary information on the SI index. The coefficient α1 is

estimated to -0.77 mm day−1 ◦C−1 (with a p value of about 10−6), a value similar to the regression on

THR-MLT only (see Eq. (1)) ; this shows that the CPCE and THR-MLT provide information that over-

lap very little (indeed, the correlation between THR-MLT and the CPCE is 0.03). The linear regression

provides the following estimates: α2 = 7.3 mm day−1 (with a p value of 5.10−3), α0 = 2.8 mm day−1 and

ǫ0 = 0.7 mm day−1 .

The robustness of this regression model as well as the appropriateness of excluding INMCM4 is verified by

checking each model residuals, leverage and Cook’s distance (see fig. 18 in the Appendix).

The regression model in Equation (4) provides a more complete set of drivers of the double ITCZ than the

model of Equation (1). This is illustrated by the increased adjusted R2 (R2). R2 = 0.85 in the regression

model defined by Equation (4) instead of 0.7 in that defined by Equation (1). In addition, the unexplained

bias is smaller than in Equation (1) (ǫ0 = 0.7 mm day−1 instead of 1.3 mm day−1 ), showing that a
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larger part of the error on the SI is better accounted for by the statistical model defined by Equation (4).

However, ǫ0 6= 0 show that some mechanisms are still missing to explain completely the double ITCZ bias

and further investigation is needed.

To summarize the different contributions to the SI bias in OAGCMs, we rewrite Equation (4) to express

the SI bias:

∆SI = α1 ∆(THR−MLT ) + α2 CPCE + ǫ+ ǫ0, (5)

where ∆ indicates the difference between the model and the observed values. This decomposition of the SI339

bias in OAGCMs are shown in figure 15.340

Models producing pronounced double ITCZ bias (e.g. GISS-E2-R, MRI-CGCM3, GFDL-ESM2M...) show341

significant and positive errors in representing both atmospheric and coupled processes. Combined, these342

errors result in a larger SI bias. In contrast, models producing a smaller SI bias (e.g. MIROC5, IPSL-CM5A-343

LR, IPSL-CM5A-MR) show a negative bias on THR-MLT, that compensates the error on the simulated344

relationship between circulation and convection. In these models, SST and associated coupled feedbacks345

described by THR-MLT play a compensatory role on atmospheric processes. This, explains, in particular,346

the larger SI produced in the AMIP simulations of MIROC5 compared to the CMIP simulations. This is347

not the case in IPSL-CM5A-LR and IPSL-CM5A-MR, where the SI bias is amplified in CMIP simulations,348

which suggests that other coupled processes are misrepresented in OAGCMs that are not accounted for by349

the THR-MLT index. Overall, it appears that the misrepresentation of the interaction between convection350

and circulation (as measured by the CPCE) explains a significant fraction of the SI bias, but the error on351

coupled processes (as measured by THR-MLT) explains most of the inter-model spread.352

Tables 2, 3 and 4 summarize the results of the performed regressions.353

Table 2 Results of the regression of the SI on THR-MLT (Equation (1))

Eq 1 α1 p value ǫ0 R2

AMIP -0.82 1 10−3 0.86 0.5

CMIP -0.83 1 10−5 1.3 0.7

Table 3 Results of the regression of the SI on the CPCE (Equation (3))

Eq 3 α2 p value ǫ0 R2

AMIP 14.6 5 10−4 -0.25 0.7
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Table 4 Results of the regression of the SI on THR-MLT and the CPCE (Equation (4))

Eq 4 α1 p value α2 p value ǫ0 R2

AMIP -0.34 0.16 10.6 0.02 0.03 0.71

CMIP -0.77 7 10−7 7.3 5 10−3 0.7 0.85

6.2.2 Decomposition of the weighted precipitation bias in OAGCMs354

A more detailed description of the precipitation-large-scale circulation interaction can be obtained by

decomposing the weighted precipitation bias in each CMIP5 model into three terms:

∆(PDFω × Pω) = ∆PDFω × Pobs +∆Pω × PDFobs +∆PDFω ×∆Pω (6)

where PDFω is the ω500 PDF, Pω is the average precipitation for each ω500 regime, Pobs and PDFobs355

are the observed distributions and ∆ indicates the difference between the model and the observed values.356

The first term corresponds to the error in the PDF. It is associated with the circulation bias. The second357

term corresponds to the bias resulting from the errors of precipitation simulated in each dynamical regime,358

considered to be the thermodynamical contribution. The third term is associated with the covariation359

of dynamical and thermodynamical biases. The contributions to the weighted precipitation bias, ordered360

with ascending CPCE index, are shown in figure 16. The model IPSL-CM5B-LR, whose CPCE index is the361

lowest (see fig. 14), produces the most realistic representation of the precipitation-large-scale circulation362

relationship through a compensation between dynamical and thermodynamical errors in ascending and363

subsiding regimes.364

A common characteristic between the other CMIP5 models appears within weak-to-moderate ascending365

regimes (-60 < ω500 <0 hPa day−1): comparing the shape of the different distributions, it appears that the366

error on the weighted precipitation (∆(PDFω×Pω)) is controlled by the error in the frequency of occurence367

of vertical regimes (∆PDFω × Pobs), rather than the error in precipitation intensity within each regime368

(∆Pω×PDFobs). Models with small CPCE (e.g., BCC-CSM1-1, CSIRO-Mk3-6-0...) tend to underestimate369

the frequency of weak-to-moderate ascending regimes and overestimate precipitation intensity in these370

regimes, resulting in a compensation between the two errors and a more realistic contribution of weak-to-371

moderate ascending regimes to the mean tropical precipitation. However, models with larger CPCE index372

(e.g., CNRM-CM5, GISS-E2-R,...) overestimate both the precipitation and the frequency of occurence of373

weak-to-moderate ascending regimes. This combination of errors is pointed out in Oueslati and Bellon374

(2013b) as strongly associated with the double ITCZ bias.375
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Under strong ascending regimes (ω500 <-60 hPa day−1), the error in regime frequency is less important376

and it is the error in precipitation intensity that determines the amplitude of the weighted precipitation377

error. These regimes, however, play a minor role on the double ITCZ problem as already mentioned.378

Two model behaviors can be distinguished regarding the contribution of subsiding regimes to the total379

precipitation. Most models show realistic distributions, resulting from a compensation between dynamical380

and thermodynamical errors (e.g., MOHC-HadGEM2-ES). The others present larger errors, which, with381

the exception of IAP-FGOALS-g2, are explained by dynamical errors (e.g., MIROC5).382

To summarize, errors in the precipitation-dynamics relationship are mostly due to errors in the frequency383

of occurence of vertical regimes, rather than errors in precipitation intensity within each regime (Bellucci384

et al, 2010; Oueslati and Bellon, 2013b). Errors in regime frequency are associated with an overestimated385

frequency of both weak-to-moderate ascending regimes and subsiding regimes. However, only the error in386

weak-to-moderate ascending regimes is most likely to influence the double ITCZ error. The overestimated387

frequency of subsiding regimes, instead, tends to suppress deep convection through lower tropospheric388

drying.389

7 Summary and conclusions390

This study examines the double ITCZ problem in CMIP5 (Coupled Model Intercomparaison Project phase391

5) OAGCMs and AGCMs. The monthly outputs of 21 years (1979-1999) of simulations from 17 OAGCMs392

are analyzed, together with the 13 available AMIP simulations.393

The results show that all the models still suffer from the double ITCZ bias to some extent, with a too-394

zonally elongated SPCZ and a spurious ITCZ in the Eastern Pacific. Since CMIP3, the simulation of the395

ITCZ has improved only in a few models, either through increased resolution (IPSL-CM5A, CNRM-CM5,396

MPI-ESM-LR) or improved convection parametrization (NCAR-CCSM4, IPSL-CM5B-LR). The seasonal397

cycle of the precipitation in the Eastern Pacific has improved in some models compared to Dai (2006) and398

De Szoeke and Xie (2008). But, over the central Pacific, most models still produce a persistent double399

ITCZ error, with a southern rainbelt present throughout the year. Indeed, comparing the Southern ITCZ400

(SI) index, it appears that the double ITCZ bias has become small in AMIP simulations, and that coupled401

atmosphere-ocean feedbacks still account for a large part of this bias in CMIP simulations, similarly to the402

previous generations of models (Lin, 2007).403
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The present study proposes a method to quantify the respective roles of SST and large-scale dynamics in404

the double ITCZ problem based on a linear regression analysis.405

The role of SST and the associated coupled feedbacks is examined through the THR-MLT index (Bellucci406

et al, 2010). This index estimates the likelihood for a given model to yield deep convection in the DI region,407

combining biases on the representation of local most frequent SSTs (MLT) and the SST threshold leading408

to the onset of ascent (THR) in the DI region. The high correlation between THR-MLT and the SI found409

in CMIP3 models (Bellucci et al, 2010) is verified in the new generation of OAGCMs (with a correlation410

coefficient of -0.89), showing that the double ITCZ problem is mainly thermodynamically driven by the411

local SSTs in southeastern Pacific. However, performing a simple regression between the SI and THR-MLT,412

it appears that THR-MLT does not explain entirely the double ITCZ bias. Also, the interaction between413

THR-MLT and the SI is not as strong in AGCMs with a correlation at the -0.7 level. In addition, since414

AMIP simulations have the same oceanic forcing, THR-MLT is directly controlled by THR, in contrast415

with OAGCMs where it is strongly determined by the model SST biases. Among the mechanisms control-416

ling THR, feedbacks between precipitation and large-scale dynamics play a dominant role.417

The error on the simulated relationship between large-scale vertical motion can be measured by the Com-418

bined Precipitation Circulation Error (CPCE). This index is defined using the mid-tropospheric vertical419

velocity ω500 sorting methodology (Bony et al, 2004) in the tropics (30◦S-30◦N) and combines biases on420

the frequency of occurence of vertical regimes and on the rainfall magnitude associated with each indi-421

vidual regime. In AGCMs, the relationship between the SI and the CPCE is stronger than that between422

the SI and the THR-MLT, with a correlation coefficient of 0.87. This shows that the SI spread between423

AGCMs is better accounted for by the CPCE and points out the important role played by precipitation-424

large-scale dynamics interaction in the double ITCZ bias. In fact, large-scale circulation can promote or425

suppress convection through ascending and subsiding motions, modifying the vertical heating profile and426

the moisture-convection feedbacks (e. g. Lau et al (1997); Hirota et al (2011); Oueslati and Bellon (2013b)).427

Deep convection, in turn, can force the large-scale circulation by modifying the pressure gradients through428

moist diabatic processes (Gill, 1980; Oueslati and Bellon, 2013a). The role of the error on the simulated429

interaction between precipitation and dynamics in coupled ocean-atmosphere simulations is investigated430

by performing a multiple linear regression of the SI on both THR-MLT and CPCE. This new regression431

model provides a significantly more complete description of the SI than a regression on THR-MLT alone.432
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The precipitation bias in southeastern tropical Pacific is driven by biases on local thermodynamical coupled433

processes associated with SST and on the global characteristics of the dynamical mechanisms associated434

with the precipitation-circulation interaction. The coupled processes account in particular for the inter-435

model spread. In some models (MIROC5, IPSL-CM5A-LR, IPSL-CM5A-MR), coupled processes biases436

described by THR-MLT reduce the double ITCZ bias. It results, in the case of MIROC5, in a smaller SI437

bias in CMIP simulations compared to AMIP simulations.438

The errors in the precipitation-dynamics relationship are dominantly caused by overestimated frequency of439

occurence of weak-to-moderate ascending regimes, rather than by errors in precipitation intensity within440

each regime (Bellucci et al, 2010; Oueslati and Bellon, 2013b). This suggests that processes inhibiting deep441

convection (e. g. convective entrainment, downdrafts and large-scale subsidence) are still poorly repre-442

sented in CMIP5 models. A better representation of some observed negative feedbacks on convection can443

help alleviate the double ITCZ. In particular, in some models (e. g. IPSL-CM5A-LR, IPSL-CM5A-MR,444

NCC-NorESM1-M), the smaller double ITCZ bias is explained by an overestimated frequency of subsiding445

regimes, that tends to suppress deep convection through lower-tropospheric drying.446

Our analysis suggests that the THR-MLT (Bellucci et al, 2010) and the CPCE indexes are relevant metrics447

to quantify the biases on SST and large-scale dynamics in OAGCMs and AGCMs that affect the double448

ITCZ bias. But they fail to explain completely the bias on SI. More efforts toward the construction and449

the use of such metrics are needed to evaluate climate model performance.450
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Appendix457

Evaluating the Results of a Linear Regression458

To validate the results of a linear regression, it is important to examine the residuals (ǫ) from the regression459

and identify extreme data points (leverage), that can potentially exercise a great influence on the regression460
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line. The residuals are normalized (i.e., divided by the standard deviation of the residuals) in order to make461

the analysis on a standard scale.462

The leverage is based on how the observed values differ from the values predicted by the regression model:463

ŜI = H SI , where SI is the vector of observed values, ŜI is the vector of values predicted by the regression464

model and H is the hat matrix. The leverage of the i-th value is the i-th diagonal element (hii) of the hat465

matrix H .466

Combining both residuals and leverage, we obtain a measure of the actual influence each point has on467

the slope of the regression line, namely the Cook’s distance. Cook’s distance is a measure of the effect of468

deleting a given observation on the regression analysis (Cook and Weisberg, 1982).469

Cook’s distance is calculated as: Di =
∑n

j=1(ŜIj−ŜIj(i))
2

p MSE , where ŜIj is the prediction from the full regres-470

sion model for observation j, ŜIj(i) is the prediction for observation j from a refitted regression model in471

which observation i has been omitted, MSE is the mean square error of the regression model and p is the472

number of parameters in the model. Cook’s distance can be expressed as a function of both residuals and473

leverage: Di =
ǫ2i

p MSE [ hii

(1−hii)2
], where ǫi is the residual of the regression. Data points with large residuals474

and/or high leverage may alter the result of the regression.475

Smaller Cook’s distances means that removing the observation has little effect on the regression results.476

Distances larger than 1 are suspicious and suggest the presence of a possible outlier or a poor model.477

Figure 17 shows the standardised residuals versus leverage plot of the regression model, described by478

Equation (3), performed with AGCMs, with and without INMCM4. The relationship between residuals479

and leverage is highlighted through a LOESS curve (LOcal regrESSion2, Fox (2002)). Superimposed on480

the plot are contour lines for the Cooks distance.481

Comparing the two plots, we see that the regression performed without INMCM4 (see fig. 17b) exhibit482

smaller residuals and leverage. Indeed, the values of Cook’s distance are inferior to 1. This confirms the483

robustness of the regression model described by Equation (3) in AGCMs and validates the exclusion of484

INMCM4.485

Figure 18 shows the same plot of the regression model, described by Equation (4), performed with486

2 LOESS denotes a method that is also known as locally weighted polynomial regression. At each point in the

data set a low-degree polynomial is fitted to a subset of the data, with explanatory variable values near the point

whose response is being estimated. The polynomial is fitted using weighted least squares, giving more weight to

points near the point whose response is being estimated and less weight to points further away.
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OAGCMs, with and without INMCM4. Again, INMCM4 is identified as an outlier (see fig. 18a). In-487

deed, after excluding INMCM4, residuals and leverage are smaller and the values of Cook’s distance are488

inferior to 1 (see fig. 18b). This validates the regression model described by Equation (4) in OAGCMs and489

emphasizes its suitability at explaining the double ITCZ bias through both THR-MLT and CPCE indexes.490
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Fig. 1 Annual mean precipitation (1979-1999) from GPCP data and 17 CMIP5 OAGCMs.
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Fig. 4 Seasonal cycle of precipitation in eastern Pacific (80W-120W) for GPCP data and CMIP5 OAGCMs.
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Fig. 5 Seasonal cycle of precipitation in central Pacific (130W-170W) for GPCP data and CMIP5 OAGCMs.
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function of ω500, (c) Contribution to the mean tropical precipitation as a function ω500, derived from observations

and CMIP5 AGCMs.
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Fig. 12 Scatterplot of CPCE and SI index for CMIP5 AGCMs and observations.
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Fig. 14 Scatterplot of CPCE and SI index for CMIP5 OAGCMs and observations.
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Fig. 16 Decomposition of the weighted precipitation bias into three contributions from the PDF bias, the precipi-

tation intensity bias and the co-variation of dynamic and non-dynamic biases.
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that fits to the scatter plot. Contour lines represent the Cook’s distance.
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