

Study of a temperature gradient metamorphism of snow from 3D images: time evolution of microstructures, physical properties and their associated anisotropy

Neige Calonne^{1,2}, F. Flin¹, C. Geindreau², B. Lesaffre¹ and S. Rolland du Roscoat² ¹ Centre d'Etudes de la Neige, CNRM-GAME UMR 3589, Météo-France – CNRS, France ² Lab 3SR - UMR CNRS 5521, UJF, G-INP, Grenoble, France

CONTEXT/GOAL

The temperature gradient metamorphism is a frequent process which affects the snowpack structure leading often to weak layers (faceted crystals and depth hoar). One of its main features is the development of vertical structures of ice but its impact on physical properties has been investigated by few studies. In this poster, we study the time evolution of several properties of a snow slab subjected to a controlled temperature gradient. For this purpose we use 3D images of snow samples obtained by X-ray micro-tomography. Some properties are computed in the x-, y- and z-directions of the samples so that we can determine their anisotropy coefficient. Finally, we present two analytical models based on ellipsoidal inclusions as ways to estimate the effective thermal conductivity and permeability of snow.

EXPERIMENT

SNOW PROPERTIES COMPUTED FROM 3D IMAGES

SNOW ANISOTROPY

ANALYTICAL MODELS OF SNOW

Models are based on ellipsoidal inclusions and require basic information such as:

- density (ice/air proportion)
- correlation lengths (ellipsoids shape) such as $a = (I_{cx}+I_{cy})/2$ et $b = I_{cx}$

· connectivity of the air/ice phase

 ellipsoidal inclusions of ice in an air matrix • no connectivity of the ice phase \rightarrow K estimate is multiplied by the self consistent estimate of air tortuosity to reflect the spatial

Dilute beds of ellipsoids

Permeability (Torquato 2002)

→ estimates are of the same order of magnitude as snow properties. → estimates reproduce roughly the anisotropy of properties.

CONCLUSIONS

3D images of snow samples at the micron scale obtained by X-ray tomography offer a great potential of exploitation. In this poster, we studied the time evolution of a snow slab which undergoes a temperature gradient metamorphism based on computations performed on 3D images. Our results highlight the following points:

- initial ice grains evolve gradually toward depth hoar showing rounded and faceted surfaces at the top and base of the grains, respectively (mean curvature).
- the structure develops preferentially in the z-direction (I_c) , which induces an anisotropic behavior of the heat conduction (k) and the air flow (K).
- parametrizations of physical properties based on density (e.g. Yen et al. 1981, Calonne et al. 2011) should include microstructural parameters reflecting the general shape of heterogeneities (size, anisotropy).
- analytical models of ellispoidal inclusions based on basic information offer good estimates of properties and anisotropy coefficients of snow.

In overall, we provide a detailed dataset which may be used as a guideline and a validation tool for snow models at micro and macro scale.

- Calonne et al., GRL, 38, L23 501, 2011. Calonne et al., TC, 6, 939–951, 2012.

Flin et al., proceedings of the 12th Int. Conf. on the P.C.I., 321–328, 2011.
Löwe et al., J. Glaciol., 57, 203, 2011.

Satyawali et al., Ann. Glaciol., 49, 43 – 50, 2008. Schneebeli et al., Hydrol. Process., 18, 3655–3665, 2004 Torquato, Springer, 2002.
Yen, Tech. Rep. 81-10, CRREL, 1981.