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This short document is intended to provide some technical explanations about the ROF
algorithm, and its current implementation.

1 Inputs

1.1 List of inputs
Three inputs are required :
– Y (usually : the observations), a vector of size n× 1,
– X (usually : the response pattern to each external forcing), a matrix of size n× I,
– Z (a sample of realisations of internal climate variability), a matrix of size n× nZ .

1.2 Pre-processing : Data organisation
The current version of the ROF package is specifically designed for spatio-temporal datasets,

with the spatial information corresponding to projection onto spherical harmonics. All input
datasets need to be pre-processed as described below.

Let nT and nS be, respectively, the temporal and spatial dimensions (n = nTnS is the
dimension of Y ). All input data are assumed to be organised as follows :

Y = (Ys=1,t=1, Ys=2,t=1, . . . , Ys=1,t=2, . . . , Ys=nS ,t=nT
)T ,

where s and t denote respectively the spatial and temporal indices.
The spatial information is assumed to be provided via spherical harmonic coefficients. The

number of spherical harmonics is given by Trunc (triangular truncation is assumed). Note that
nS is a function of Trunc :

nS = (Trunc+ 1)2.

Then, each s corresponds to a given spherical harmonic. These spherical harmonics need to be
sorted in an ascending zonal wave number order, as described in Table 1 (this matters, as a
weighting is applied to each spherical harmonic according to its total wave number, following
Stott and Tett, 1998).
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Table 1 – Correspondence between s and spherical harmonics, as defined by the total wave
number l and the zonal wave number m, in the case of a T4-truncation.

s = 1 l = 0 m = 0
s = 2 l = 1 m = 0

...
...

...
s = 5 l = 4 m = 0
s = 6, 7 l = 1 m = 1

...
...

...
s = 12, 13 l = 4 m = 1
s = 14, 15 l = 2 m = 2

...
...

...
s = 24, 25 l = 4 m = 4

1.3 Pre-processing : Temporal centering
The current version of the algorithm assumes that a temporal centering has been applied

to the data (previously). Temporal centering means, for Y , that

∀s,
nT∑
t=1

Ys,t = 0.

Temporal centering can be achieved by removing the mean over the full period. Note that it is
required for X and Z as well as for Y .

2 Outputs
The ROF package provides, as the main result, a matrix providing, for each external forcing

considered, the scaling factor best-estimate β̂, the lower bound of its confidence interval β̂inf ,
and the upper bound of its confidence interval β̂sup. In the case of a 2-forcing (ANT+NAT)
analysis, this output matrix will be organised as follows :

β̂inf
ANT β̂inf

NAT

β̂ANT β̂NAT

β̂sup
ANT β̂sup

NAT

 .

Note that the bounds of these confidence intervals may vary very slightly, as random numbers
are used for computing them (see tls.sci).

Another useful output is pv_cons, which is the p-value of the Residual Consistency Check.
Note that this p-value may vary slightly when calculated with the Monte-Carlo algorithm (be-
cause the values simulated via the MC algorithm are random).

Other outputs may be useful, eg the reconstructed observations or response patterns (resp.
Y_tilde and X_tilde).
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3 Full-ranked covariance matrix and dimension reduction
Let assume here that nS = 1, which means that Y , ε and so on, are time-series. The tem-

poral centering describes above means that 1T ε = 0, where 1T = (1, . . . , 1), so the covariance
matrix of ε, C is degenerated : 1TC1 = 0, and rk(C) ≤ n− 1.

Is that an issue for estimating C ?
If the sample estimate Ĉ is used, then one will have 1T Ĉ1 = 0 and rk(Ĉ) ≤ n−1. This, however,
no longer occur with a regularised estimate ĈI , because regularisation makes that rk(ĈI) = n.
In such a case, as the true matrix C is known to be degenerated, one may want to avoid the
use of a full-rank estimate. Moreover, the regularised Ledoit estimate is designed for full-ranked
covariance matrices. The estimation of the regularisation coefficients would be deteriorated if
this condition is not satisfied.
A solution to this issue is to reduce the dimension of the variables (Y , ε, etc), by projecting
onto a subspace of dimension n− 1, such that rk(C) = n− 1 (equivalently, one eliminates the
degeneracy). This is done by projecting onto [1]⊥.

Does the choice of the projection have some impact ?
Yes. Under a transformation Z 7→ AZ, Ĉ 7→ AT ĈA, but this no longer occurs with ĈI . As
mentioned in Ribes et al (2013), however, it is found to have little impact on the final results.

4 TLS implementation

4.1 Use of non-independent predictors x̃i

In many cases, sets of simulations are not available for each wished combination of external
forcings.

Illustration : one wants to decompose the observed changes as ANT + NAT contributions,
while only ALL and NAT simulations are available (ANT : anthropogenic only, NAT : natural
only, ALL : all historical). Equivalently, one wants to infer β = (βANT , βNAT ), from the input
X = [xALL, xNAT ].

Solution in OLS (following Tett et al, 1999, Supplementary Material, Section 9).
In OLS, a first step could be to define xANT = xALL − xNAT , using the additivity assumption
(widespread in D&A). Then, the OF algorithm could be applied with X∗ = [xANT , xNAT ].
In such a case (C is assumed to be known here),

β̂ = (X∗′C−1X∗)−1X∗′C−1Y.

As X∗ has been derived from X with

X = X∗P, or X∗ = XP−1,
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where P =

(
1 0
1 1

)
, and P−1 =

(
1 0
−1 1

)
, one has

β̂ =
(
(XP−1)

′
C−1XP−1

)−1
(XP−1)

′
C−1Y

= P (X ′C−1X)−1X ′C−1Y,

= P [β̂ALL, β̂NAT ].

This results means that the algorithm may be performed with X instead of X∗, if the obtained
estimates [β̂ALL, β̂NAT ] are properly transformed (by applying matrix P ).

What is P ? (variable Proj in main.sci)
The matrix P is very easy to understand, and provide the information about what forcing is
taken into account in each simulation. More precisely :

– the columns of P are the sets of simulations available ; here : ALL, NAT,
– the rows of P are the external forcings studied ; here : ANT, NAT.

The entry pi,j of P tells whether forcing i is included in simulation j (basically : 1 means in-
cluded, 0 means not included).

Solution in TLS.
This issue is even more problematic in TLS, because each response pattern is then assumed to
be noised. Following notations used in (Ribes et al, 2013), X is not known in such a case, and
what is observed instead is (still in the same example) :

X̃ = [x̃ALL, x̃NAT ] = [xALL, xNAT ] + [εxALL
, εxNAT

].

Because x̃ALL and x̃NAT are derived from different sets of simulations, one may assume εxALL

and εxNAT
to be independent. However, if one computes x̃ANT = x̃ALL− x̃NAT , the correspon-

ding noise will be εxANT
= εxALL

− εxNAT
, which is no longer independent from εxNAT

. Then,
the columns of X̃∗ = [x̃ANT , x̃NAT ] cannot be assumed to be independent. As a consequence,
the TLS fit has to be based on X̃ and not X̃∗. Then, the outputs are corrected (matrix P is
applied) to provide the wished scaling factors. Note that this issue also makes the computation
of confidence intervals more complicated in TLS.

4.2 TLS confidence intervals
Note : Details about the algorithm used to compute confidence intervals should be added to

this section.

In the case of a TLS fit, the results in terms of scaling factor confidence intervals may be
surprising, as ±∞ may be included in the confidence interval. For that reason, the coefficients
provided for a given forcing, say [β̂inf , β̂, β̂sup], may be :

– β̂inf ≤ β̂ ≤ β̂sup, eg [−1, 0, 1] (most common case).
– β̂ ≤ β̂sup ≤ β̂inf , eg [10, 0, 1] ; in such a case, the confidence interval may be written as
[10,+∞[∪]−∞, 1], and it does include β = 0.

– β̂sup ≤ β̂inf ≤ β̂, eg [−1, 0,−10] ; in such a case, the confidence interval may be written
as [−1,+∞[∪]−∞,−10], and it does include β = 0.
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However, if you find another case (eg β̂sup ≤ β̂ ≤ β̂inf ,...), then my script is bugged. You should
tell me !
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