SoFog3D modélisation

PRÉVISION DU BROUILLARD AVEC AROME : RÉSULTATS STATISTIQUES

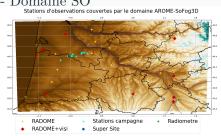
Salomé ANTOINE

11 mai 2021

Configuration AROME

- 2 grilles:

 $1250 \text{m L} 90 : 1^{er}$ niveau à 5m $500 \text{m L} 156 : 1^{er}$ niveau à 1m


- Réseau de 00h UTC

- 48h d'échéance

- Échéance d'intérêt :

+19-+24 = début de nuit +25-+30 = milieu de nuit +31-+36 = fin de nuit / matin

- Domaine SO

- Référence (=opérationnelle) : ré-

solution :1250m L90 microphysique : ICE3

dépôt : non

- Statistiques générales sur 6 mois
- Formation et dissipation du brouillard
- Statistique sur le LWP

La résolution

Dans la configuration opérationnelle : microphysique ICE3 sans dépôt

Échéances depuis le réseau de 00hUTC le jour de la prévision : +25h à +30h

		DR	FAR	FBI
$1250 \mathrm{mL} 90$	ICE3 R00		38	0.96
$500 \mathrm{mL} 156$	ICE3 R00	69	43	1.21

Plus de brouillard simulé par la grille 500mL156 :

- meilleur taux de détection mais
- plus de fausses alarmes

DR = Taux de détection; FAR = Taux de fausse alarme; $FBI = \frac{Nb \text{ cas prévus}}{NL - L}$

Le dépôt

Microphysique ICE3 avec dépôt : luter contre la sur estimation de l'eau nuageuse au dessus du sol

Échéances depuis le réseau de 00hUTC le jour de la prévision : +25h à +30h

			DR	FAR	FBI
1250 mL 90				38	
$1250\mathrm{mL}90$	ICE3 + dépôt	R00	49	38	0.74

				FAR	FBI
500mL156			69		1.21
500 mL 156	ICE3 + dépôt	R00	67	41	1.15

- Baisse du DR avec 1250 m L90
- Impact plus faible avec $500 \mathrm{m}$ L156 : premier niveau à $1 \mathrm{m}$

Schéma microphysique

Passer de

- ICE3: 1-moment ie concentrations fixes à
- LIMA: 2-moment (gouttelette, pluie et glace) ie concentrations pronostiques

Échéance depuis 00h UTC le jour de la prévision : +25h à +30h

		DR	FAR	FBI
1250 mL 90	ICE3 R00	49	34	0.74
$1250\mathrm{mL}90$	LIMA R00	27	37	0.43
500mL156	ICE3 R00	67	41	1.15
$500 \mathrm{mL} 156$	LIMA R00	38	38	0.62

Problème: LIMA prévoit beaucoup moins de brouillard que ICE3 MAIS

Dans LIMA la condensation sous maille n'est pas prise en compte

 $DR = Taux de détection; FAR = Taux de fausse alarme; FBI = \frac{Nb cas prévus}{Nb cas obs}$

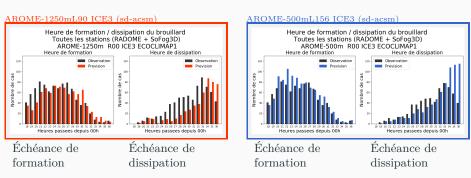
La condensation sous maille

Prise en compte de la condensation sous maille

Échéance depuis 00h UTC le jour de la prévision : +25h à +30h

		DR	FAR	FBI
1250 mL 90	ICE3 acsm sd R00	59	38	0.96
$1250\mathrm{mL}90$	ICE3 scsm sd R00	40	30	0.58
1250 mL 90	ICE3 acsm sd R00	59	38	0.96
$1250 \mathrm{mL} 90$	LIMA acsm sd R00	53	45	0.96

- Moins de brouillard prévu par ICE3 scsm (2/5 événements manqués)
- Résultats similaires entre ICE3 et LIMA avec condensation sous maille.


```
DR = Taux \ de \ détection \ ; \ FAR = Taux \ de \ fausse \ alarme \ ; \ FBI = \frac{Nb \ cas \ prévus}{Nb \ cas \ obs} \ ; \ sd = sans \ dépôt \ ; \ acsm = range \ depôt \ ; \ acsm = r
```

avec condensation sous maille; scsm = sans condensation sous maille

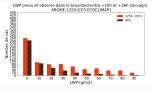
- Statistiques générales sur 6 mois
- Formation et dissipation du brouillard
- Statistique sur le LWP

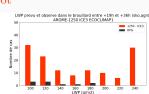
Formation et dissipation du brouillard

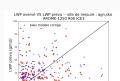
Statistiques sur le début de la nuit (Ech +19h à +24h) : beaucoup de non détections Statistiques sur la fin de la nuit/ matin (Ech +31h à +36h) : beaucoup de fausses alarmes

- Retard du modèle à la formation à 1250mL90; Mieux à 500mL156
- Retard du modèle à la dissipation pour les 2 configurations

- Statistiques générales sur 6 mois
- Formation et dissipation du brouillard
- Statistique sur le LWP $\,$

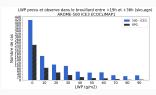

Statistiques LWP

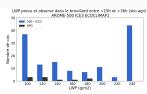

LWP $0 \ge 100 \text{ g/kg}$

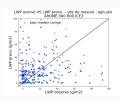

LWP 100 à 240 g/kg

LWP obs VS LWP for

AROME-1250m ICE3 sans dépôt

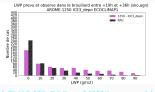


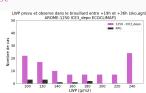


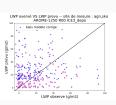


LWP observe (a/m2)

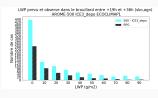
AROME-500m ICE3 sans dépôt

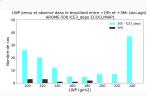

Statistiques LWP

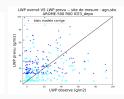

LWP 0 à 100 g/kg


LWP 100 à 240 g/kg

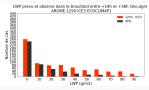
LWP obs VS LWP for

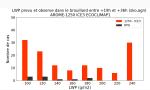

AROME-1250m ICE3 avec dépôt





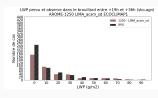
AROME-500m ICE3 avec dépôt

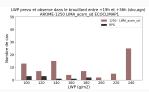

Statistiques LWP

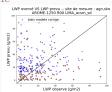

LWP $0 \ge 100 \text{ g/kg}$

LWP 100 à 240 g/kg

LWP obs VS LWP for


AROME-1250m ICE3 sans dépôt avec condensation sous maille





AROME-500m LIMA sans dépôt avec condensation sous maille

Perspectives

- Statistiques sur les 6 mois de campagne avec la condensation sous maille dans LIMA à 500m L156
- Changer l'initialisation des aérosols dans LIMA en utilisant les analyse ${\rm CAMS}$
- Utiliser une formule de visibilité plus adaptée pour LIMA
- Étudier 2 autres POIs : fausses alarmes et problèmes de formations et dissipation du brouillard