Modelling the impact of future Climate Change on operating conditions of ski resorts in the French Alps

Pierre Spandre^{1,2}, Hugues François¹, Déborah Verfaillie², Samuel Morin², Emmanuelle George¹, Matthieu Lafaysse²

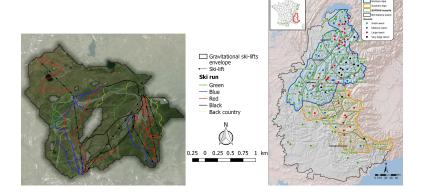
¹Université Grenoble Alpes, Irstea, LESSEM

²Météo-France - CNRS, CNRM, Centre d'Etudes de la Neige, UMR3589

26th of June 2018

Contents

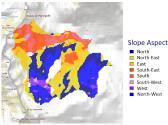
Modelling the Impact of Future Climate Change on Operating Conditions of Ski Resorts in the French Alps


CrossCut method

- Crossing spatial representations of ski resorts and
- Numerical simulations of snowpack conditions
- Using a detailed approach of snow management
- Under past and future climate conditions

2 Results

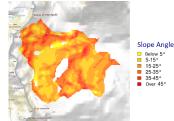
- Crossing simulated snow conditions and spatial representations
- Computation of integrated indicators


A ski-lifts based approach of gravitational areas dedicated to skiing¹

¹François et al. (2014), "Crossing numerical simulations of snow conditions with a spatially-resolved socio-economic database of ski resorts: A proof of concept in the French Alps" in Cold Regions Science and Technology

Spatial representation of ski resorts

Slope Aspect


North-East

South-East

1800 masl 2100 masl

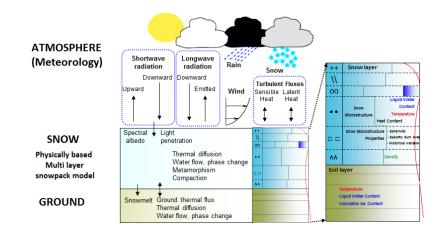
South

Slope Angle

Elevations

Snowmaking equipment

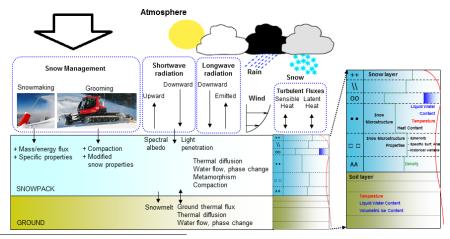
Snowmaking area


- 30% Gravitational ski-lifts envelope Ski-lift
- Buildings

0.25 0 0.25 0.5 0.75 1 km

Numerical simulations of snowpack conditions

Crocus - Natural Snow²



²Vionnet et al. (2012), "The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2" in *Geosci. Model. Dev.*

Spandre et al. (Irstea - CEN/CNRM)

Numerical simulations of snowpack conditions using a detailed approach of snow management

Crocus-Resort - Introduction of grooming and snowmaking³

³Spandre et al. (2016), "Integration of snow management in a detailed snowpack model" in Cold Regions Science and Technology

Spandre et al. (Irstea - CEN/CNRM)

Numerical simulations of snowpack conditions using a detailed approach of snow management

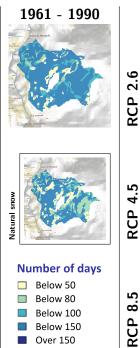
Crocus-Resort - Snowmaking approach⁴

- Evolution of snowmaking facilities
 From 0% (1985) to 30% (2015) and projected 45% (2025)⁵
- "Base layer" production (Nov. 1 to Dec. 15) and "Improvement" snowmaking (Dec. 16 to Feb. 28)
- 40% water volume lost for production⁶

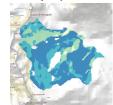
⁴Spandre et al. (2016), "Panel based assessment of snow management operations in French ski resorts" in *Journal of Outdoor Recreation and Tourism* ⁵Spandre et al. (2015), "Snowmaking in the French Alps. Climatic context, existing facilities and outlook" in *Revue de Geographie Alpine-Journal of Alpine Research*

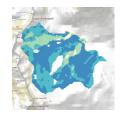
⁶Spandre et al. (2016), "Seasonal evolution of a ski slope under natural and artificial snow: detailed observations and modelisation" in *The Cryosphere*

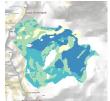
Past and future climate forcing data

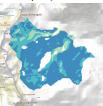

- Reference meteorological data (1958 2016)
 - SAFRAN system⁷
 - Combines observations and modelling
 - Available over all French mountain ranges
- Climate data (1950 2100)
 - EUROCORDEX dataset (13 pairs RCM/GCM)
 - Scenarios RCP 2.6, RCP 4.5 and RCP 8.5
 - Adjusted using the ADAMONT method⁸

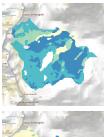
⁷Durand et al. (1993), "A meteorological estimation of relevant parameters for snow models" in Ann. Glaciol.


⁸Verfaillie et al. (2017), "The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models" in *Geosci. Model Dev.*


Impact of future Climate Change on operating conditions of ski resorts in the French Alps


and Snowmaking Including Grooming


2050 (15-yr r. Mean)



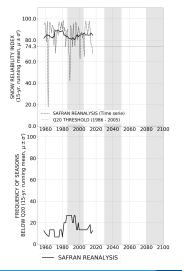
2090 (15-yr r. Mean)

Impact of future Climate Change on operating conditions of ski resorts in the French Alps

Computation⁹ of the following indicators¹⁰

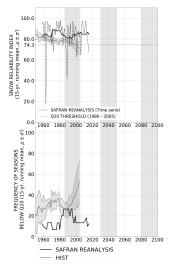
- Snow Reliability Index of snow conditions¹¹
- Frequency of challenging snow seasons below Q20¹²
- Water volumes for snowmaking

 $^{^{9}}$ Mean μ and deviation σ' of 15 years running averages of climate models. σ' is defined as 1.64 the standard deviation, mimicking 5 and 95% quantiles

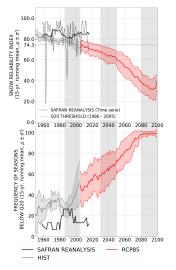

¹⁰Spandre et al. (Under Review), "Investigations on economic indicators of French Alps ski industry from an explicit spatial modelling of managed snow on ski slopes" in Journal of Tourism Management

 $^{^{11}}$ Defined as the ratio of a given ski resort surface area with a minimum 100 kg m $^{-2}$ of snow on the ground, on average for the Christmas and New Year holidays (17%) and February school holidays (83%). Proved significantly correlated to ski lifts tickets sales over 2001 - 2016.

 $^{^{12}}$ Defined as the the sixth worst reliability index over the 30 years period 1986 - 2016 in groomed snow conditions only (no snowmaking)

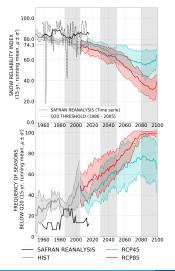

Impact of future Climate Change on operating conditions of ski resorts in the French Alps

Groomed snow conditions


Impact of future Climate Change on operating conditions of ski resorts in the French Alps

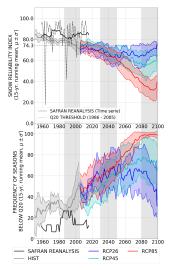
Groomed snow conditions

Impact of future Climate Change on operating conditions of ski resorts in the French Alps


Groomed snow conditions

Spandre et al. (Irstea - CEN/CNRM)

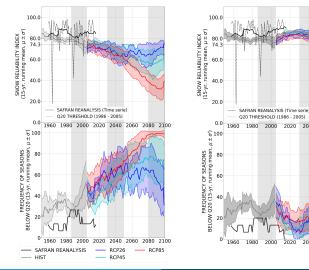
Impact of future Climate Change on operating conditions of ski resorts in the French Alps


Groomed snow conditions

Spandre et al. (Irstea - CEN/CNRM)

Impact of future Climate Change on operating conditions of ski resorts in the French Alps

Groomed snow conditions



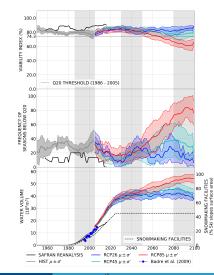
		French Alps ski resorts		
		Snow Reliability Index	Frequency	
Time Slot		(SRI)	(SRI < Q20)	
		$\mu \pm \sigma'$	$\mu \pm \sigma^{'}$	
1986 - 2005	SAFRAN	82	20	
1986 - 2005	HIST	76 ± 3	35 ± 11	
2030 - 2050	RCP 2.6	66 ± 8	65 ± 19	
	RCP 4.5	68 ± 6	54 ± 16	
	RCP 8.5	65 ± 8	63 ± 16	
2080 - 2100	RCP 2.6	68 ± 7	56 ± 22	
	RCP 4.5	57 ± 13	74 ± 22	
	RCP 8.5	35 ± 10	99 ± 2	

Aggregated index over the French Alps ski resorts.

Impact of future Climate Change on operating conditions of ski resorts in the French Alps

2080 2100

2040 2060


2040 2060 2080 2100

Impact of future Climate Change on operating conditions of ski resorts in the French Alps

		French Alps ski resorts		
		Snow Reliability Index	Frequency	Water volume
Time Slot		(SRI)	(SRI < Q20)	(Mm ³)
		$\mu \pm \sigma'$	$\mu \pm \sigma'$	$\mu \pm \sigma^{'}$
1986 - 2005	SAFRAN	83	15	5.2
1986 - 2005	HIST	79 ± 3	28 ± 9	6.5 ± 0.3
2030 - 2050	RCP 2.6	83 ± 4	20 ± 11	40.8 ± 3.7
	RCP 4.5	84 ± 3	17 ± 9	40.5 ± 2.7
	RCP 8.5	82 ± 4	20 ± 12	41.5 ± 3.2
2080 - 2100	RCP 2.6	84 ± 4	15 ± 9	41.0 ± 3.2
	RCP 4.5	78 ± 7	32 ± 23	44.3 ± 4.7
	RCP 8.5	63 ± 7	78 ± 17	53.7 ± 3.2

Snow conditions including Snowmaking

Evolution of snowmaking facilities from 0% (1985) to 45% (2025)

5th International Conference on Climate, Tourism and Recreation Work under progress!^a Thank your for your attention... and feedback!

^aSpandre et al. (In prep.), "Climate constraints on ski tourism sustainability in the French Alps in the 21" century" in xxx