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ABSTRACT

Early indication of an increased risk of extremely warm conditions could

help alleviate some of the consequences of severe heat waves on human

health. This study focuses on boreal spring heat wave events over West Africa

and Sahel, and examines the long-range predictability and forecast quality of

these events with two coupled forecasting systems designed at Météo-France,

and both based on the CNRM-CM coupled global climate model: the opera-

tional seasonal forecasting System 5, and the experimental contribution to the

WWRP/WCRP S2S project. Evaluation is based on past re-forecasts spanning

22 years from 1993 to 2014, comparing to reference data from reanalyses. On

the seasonal time scale, skill in reproducing heat wave duration and number

of days interannual anomalies is limited at a grid-point level, but significant

for regional averages. Sub-seasonal predictability of daily humidity-corrected

apparent temperature drops sharply beyond the deterministic range. In addi-

tion to re-forecast skill measures, the analysis of real-time forecasts for 2016

both in terms of anomalies with respect to the re-forecast climatology and

using a weather type approach provides additional insight on the systems per-

formance in giving relevant information on the possible occurrence of such

events.
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1. Introduction25

In a warming world, many areas are subject to an increase in the magnitude of heat waves, mainly26

due to the rise in seasonal mean temperatures, and future projections imply that the number and27

severity of heat waves should rise during the 21st century (Russo et al. 2014). Sherwood and28

Huber (2010) argue that consequences on human health could be dramatic for populations around29

the globe due to an increased exposure to heat stress. Mora et al. (2017) show that the number30

of days with potentially fatal climatic conditions could increase dramatically across the globe31

following the IPCC greenhouse gas emission scenarios.32

Africa is no exception, although few studies have focused to date on extreme temperature events33

over the region (Conway 2011), mainly due to limited access to in-situ data. Two studies by34

Ly et al. (2013) and Moron et al. (2016) found using daily station data a decrease in cold spells35

and an increase in heat waves in the Sahel and West African regions over the second half of the36

20th century. Analysis of daily data in western central Africa (Aguilar et al. 2009) and southern37

and western Africa (New et al. 2006) led to similar conclusions. Fontaine et al. (2013) found a38

positive trend in heat wave occurrences over Sahel in gridded surface temperature data. Using39

different methodologies, Barbier et al. (2017) and Ceccherini et al. (2017) compared heat wave40

characteristics in in-situ data and reanalysis datasets for the last decades over Sahel and the African41

continent, respectively. Ceccherini et al. (2017) found an increase in heat wave intensity in the last42

decades, and Barbier et al. (2017) showed that minimum and maximum temperature trends during43

heat waves were generally consistent with the background (positive) trends for these variables.44

There is no single definition of a heat wave, depending on the time scale, location and impact45

considered (Perkins 2015), but most heat wave definitions imply that temperature (whether ab-46

solute or wet bulb) should reach above a fixed or relative threshold, and the event should last47
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for several consecutive days. In a recent study, Déqué et al. (2017) evaluated the impact of a48

2◦C warmer global climate on tropical Africa using CORDEX regional climate model (RCM)49

simulations. They found a very large increase in the number of heat wave days when using a50

fixed threshold based on percentiles of present climate, but also (although much more moderate)51

when adapting the threshold to future climate. Moreover, in Africa the implications for maximum52

temperature reaching values 2◦C higher than in present climate could be catastrophic for human53

health, since monthly mean maximum temperatures already reach well over 40◦C over some areas.54

Dosio (2017) inferred similar conclusions using RCMs to downscale CMIP5 projections.55

The consequences of heat waves on human activities and health make skillful and reliable cli-56

mate forecasts at sub-seasonal to seasonal time scales all the more needed to anticipate risks and57

develop adapted responses (Lowe et al. 2016). Unfortunately, seasonal prediction skill for temper-58

ature extremes is often quite limited, and directly related to skill in predicting the seasonal mean59

of the physical variable (Pepler et al. 2015). Most studies on a seasonal time scale focus there-60

fore on monthly or seasonal mean temperature values or quantiles. Lazenby et al. (2014) found61

evidence of skill in forecasting seasonal mean maximum and minimum temperature over South62

Africa. Hamilton et al. (2012) studied the seasonal prediction skill of the Met Office GloSea4 sys-63

tem in forecasting counts of extreme temperature days over Northern Hemisphere midlatitudes.64

In the present study, we include an additional challenge for our seasonal forecasting system by65

studying its ability to correctly forecast interannual variability of persistent (e.g. beyond several66

days) extreme heat conditions in a given season.67

The focus of studies on sub-seasonal to seasonal predictability over West Africa in general,68

and Sahel in particular, is often set on precipitation and drought (Conway 2011). Many studies69

suggest that seasonal forecasting skill over the region remains modest for summer precipitation70

(Rodrı́guez-Fonseca et al. 2015; Batté and Déqué 2011; Tompkins and Feudale 2010; Philippon71
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et al. 2010) and monsoon onset dates (Vellinga et al. 2013). Temperature anomalies over West72

Africa have received much less attention in seasonal and sub-seasonal predictability studies, al-73

though temperature is often more predictable than precipitation at these time scales over most areas74

of the globe (Doblas-Reyes et al. 2013). For instance, global evaluations of ECMWF System 475

seasonal forecasts reliability by Weisheimer and Palmer (2014) showed that temperature forecasts76

were more reliable than precipitation forecasts over West Africa. Pepler et al. (2015) showed some77

gridpoint evaluations of correlation for surface temperature and maximum and minimum temper-78

ature over the globe using the ENSEMBLES project multi-model, and some areas with significant79

skill were found over West Africa. However, both of these studies focus on seasonal means at a80

global scale for summer and winter seasons. Near-surface temperatures peak over most areas of81

West Africa and Sahel during the end of the dry season (Fontaine et al. 2013), and heat waves are82

more likely to occur then. To our knowledge, this study is the first to evaluate heat wave prediction83

skill at a seasonal time scale with a focus on Sahel during boreal spring.84

Depending on their definition and the spatial location, heat waves typically last five days over85

Sahel (Barbier et al. 2017). This time scale implies that seasonal forecast information can only86

provide an indication as to an increase in the probability of heat waves occurring, without pinpoint-87

ing precisely when heat waves are expected to happen during the season. The sub-seasonal scale,88

ranging beyond deterministic ranges up to several weeks, is relevant for decision-making related89

to such types of events (White et al. 2017). In the scope of the WMO World Weather Research90

Programme (WWRP) - World Climate Research Programme (WCRP) Sub-seasonal to Seasonal91

Prediction Project (S2S, Vitart et al. 2016), several international weather centers routinely provide92

S2S forecasts for research purposes, to bridge the gap between medium-range and seasonal en-93

semble forecasts (Brunet et al. 2010). Hudson et al. (2016) illustrate how the Australian Bureau of94

Meteorology coupled model experimental extended-range forecasts provide information on heat95
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wave risk for three case studies in Australia. In a recent case study over Europe, Ardilouze et al.96

(2017) investigated the skill in forecasting extreme surface temperatures with the Météo-France97

experimental system participating in S2S.98

The aim of this present study is to assess the forecast quality of the Météo-France (1) sea-99

sonal forecasting System 5 included in the EUROSIP multi-model seasonal predictions (Vitart100

et al. 2007) and (2) S2S contribution in providing early insight on the occurrence of lasting warm101

temperature extremes at these time scales over West Africa. For seasonal forecast quality assess-102

ments, we focus on the March to June (MAMJ) target season for end of January initializations,103

corresponding to forecast times of two to five months. The same coupled model is used for the S2S104

project, and a first assessment of sub-seasonal skill is provided alongside a case study illustration105

for April 2016.106

The paper is organized as follows: section 2 describes in detail the Météo-France seasonal fore-107

casting System 5 as well as the S2S re-forecasts and real-time forecasts, and discusses the heat108

wave metrics and reference data used for this study. Section 3 shows results in terms of seasonal109

and S2S forecast skill over a 22-year retrospective period covering 1993–2014. We then focus110

on the MAMJ 2016 season as a case study illustration for both time scales in section 4, in the111

context of a strong El Niño event in the preceding winter. Section 5 uses a weather type approach112

as an additional way of decoding model inconsistencies with the reference data for the case study.113

Conclusions and perspectives for this work are summarized in section 6.114
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2. Forecast systems and methods115

a. Météo-France System 5 based on CNRM-CM116

The Météo-France seasonal forecasting System 5 (henceforth ”System 5”) is based on the117

CNRM-CM global coupled model, updated with respect to CNRM-CM5 used for CMIP5 and118

described in Voldoire et al. (2013). The ARPEGE-Climat atmosphere component is version 6.0,119

with diagnostic physics as in CNRM-CM5. The 91 vertical levels allow for a high-top explicit120

representation of the atmosphere up to 0.01 hPa, including stratospheric ozone, non-orographic121

gravity wave drag and quasi-biennal oscillation parameterizations (Cariolle and Déqué 1986; Lott122

and Guez 2013). The horizontal grid is a reduced gaussian grid with a linear truncation at t255,123

corresponding to an approximate resolution of 0.7 degrees in latitude and longitude. The ocean124

model is NEMO version 3.2 (Madec 2008) as in CNRM-CM5, using the tripolar ORCA1L42 grid125

with a nominal resolution of 1 degree and a horizontal refinement near the equator. Land surface126

is modelled with the SURFEX v7.3 scheme (Masson et al. 2013), and the sea ice component is an127

updated version of the GELATO sea ice model used for CMIP5. The ARPEGE-SURFEX system128

is coupled daily to NEMO-GELATO using the OASIS3 coupler (Valcke 2006).129

Table 1 describes the main characteristics of the seasonal and subseasonal re-forecasts and fore-130

casts based on System 5, commented in the following two paragraphs.131

b. Seasonal re-forecasts and forecasts132

Retrospective forecasts (referred to as ”re-forecasts”) for System 5 were run up to 7 months lead133

for each calendar month over the 1993-2014 period, using a 15-member ensemble, starting from134

the ERA-Interim reanalysis in the atmosphere (Dee et al. 2011), and initial ocean and sea ice con-135

ditions provided by Mercator-Ocean (Ferry et al. 2010). Ensemble members were generated using136
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the stochastic dynamics technique described in Batté and Déqué (2016). 51-member operational137

System 5 ensemble forecasts are run each start month since May 2015 based on initial conditions138

from the second half of the previous month: 25 members starting from the first Wednesday after139

the 12th of the month, and 26 members the following Wednesday, so as to ensure a timely delivery140

of the seasonal forecast ensemble at the beginning of the first forecast month. These are initial-141

ized from ECMWF IFS 00Z atmosphere and land analyses of the corresponding start date and an142

upscaling of Mercator-Ocean’s GLORYS2V4 operational ocean analysis to the ORCA1 grid.143

c. Subseasonal re-forecasts and forecasts144

In the case of the subseasonal range, Météo-France does not issue operational forecasts, but145

takes part on a voluntary basis in the subseasonal-to-seasonal (S2S) project. The participating146

centers subseasonal re-forecast data and real-time forecasts are made freely available on the project147

database after several weeks delay (Vitart et al. 2016).148

Re-forecasts for the Météo-France contribution to S2S are initialized on the 1st and 15th of each149

month from January 1993 to December 2014 (Ardilouze et al. 2017). As for the seasonal re-150

forecasts, the ensemble size is of 15 members, whereas the real-time forecasts form a 51-member151

ensemble. Note however that unlike the seasonal System 5 runs, the S2S real-time forecasts are152

generated in ”burst” mode (i.e. all members starting on the same date) each Thursday, using153

stochastic dynamics perturbations to generate ensemble spread. This allows for each member154

of the ensemble to benefit from the most up-to-date initial conditions both for the ocean and155

atmospheric counterparts at the time of the forecast start. Initial conditions for the re-forecasts156

and real-time runs are derived as for the seasonal forecasting system.157
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d. Heat wave occurrence and verification metrics158

Depending on specific applications and the geographical area of interest, there are many ways159

to define the occurrence of heat waves, and therefore a variety of heat wave indices have been160

used in past works (see e.g. Perkins (2015) or Grotjahn et al. (2016) for some examples). In the161

case of the March to June (MAMJ) spring season in West Africa, the use of absolute thresholds162

commonly defined over mid-latitudes is irrelevant, as temperatures reach well above the values163

describing extremely warm days or tropical nights on a regular basis. For this study we decided to164

use the 90th percentiles of each gridpoint daily minimum and maximum screen level temperature165

(Tmin and Tmax, respectively) climatology over the re-forecast period, after applying a 5-day166

moving window average to the data. Tmin and Tmax heat waves are defined separately, when Tmin167

(respectively Tmax) reaches values above its 90th percentile for at least 3 days. This definition168

therefore takes into account the seasonal cycle of Tmin and Tmax over the region, so that days169

above this threshold can occur during the whole spring season, even when the amplitude of the170

seasonal cycle is quite large.171

For both Tmin and Tmax heat waves, two indices characterize a given MAMJ season at each172

grid point:173

• HWDI (heat wave duration index) is the number of days per MAMJ season for which a heat174

wave occurs (once the 3 day limit is applied),175

• HWPP (heat waves per period) is the number of separate heat wave events per MAMJ season.176

The definition of the daily climatology using a 5-day window may not be the most accurate177

estimate (with respect to other methods such as polynomial regression fitting, see Mahlstein et al.178

(2015)). We chose this method for the sake of simplicity, and more elaborate techniques often179

call for a longer data sample than the re-forecast depth for System 5. Based on results from180
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Mahlstein et al. (2015) with a perfect model approach, this choice could have a marginal impact181

on the estimates of re-forecast skill for the percentile-based threshold indices discussed in this182

paper. Our hypothesis is that this additional source of uncertainty can be neglected (with respect183

to other sources such as the skill evaluation method, the reference data, and sub-sampling with a184

short re-forecast and limited ensemble size).185

Temperature is not the only physical factor of heat stress for humans. Extreme heat can be made186

unbearable by high levels of ambient humidity, or conversely be alleviated by a dry environment.187

We therefore computed a humidity-corrected apparent temperature (AT) as in Fischer and Schär188

(2010), but for daily mean screen level temperature and relative humidity estimated from the daily189

mean screen level dewpoint temperature as in Lee and Brenner (2015). Computations were done190

with daily mean data due to forecast data availability; the AT values computed are likely much191

lower than the maximum AT values one would get using Tmax and simultaneous relative humid-192

ity, since the diurnal cycle of relative humidity during the pre-monsoon season over Sahel is often193

weak (Gounou et al. 2012). Forecast and re-forecast indices were computed after bias-correcting194

mean temperature and mean dewpoint temperature fields. Details of the computation are provided195

in the supplemental material. In the case of AT, we chose to focus on absolute threshold excee-196

dences to define an AT35 heat wave when the daily mean apparent temperature exceeds 35 degrees197

for more than three days. As for Tmin and Tmax, we compute HWDI and HWPP values for each198

gridpoint and MAMJ season.199

The region of study is defined as the land grid points with latitudes ranging from 0 to 25◦N and200

longitudes from 20◦W to 35◦E, unless stated otherwise.201

The re-forecasts are evaluated against reference data to assess the ability of System 5 to repre-202

sent the mean MAMJ indices (bias) and reproduce interannual variability (gridpoint correlation203

coefficient, root mean square error). Indices are computed for each ensemble member separately204
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(before any averaging). Deterministic skill is evaluated by computing ensemble mean indices. The205

distribution of the indices for the different ensemble members allows for a probabilistic evaluation206

of the re-forecast and estimation of the ensemble spread. In this study we use ERA-Interim re-207

analysis data (Dee et al. 2011) as our main reference. The HWDI and HWPP indices are derived208

separately for re-forecast and reference data so as to account for first-order biases of System 5 in209

the Tmin and Tmax distributions.210

Bhend et al. (2017) showed using a toy model framework that climate indices skill (based on211

threshold exceedances of daily values) is limited by the skill in forecasting the seasonal mean212

climate variable used to compute the index. Applied to this study, this suggests that the heat wave213

index prediction skill is not expected to exceed the seasonal mean Tmin and Tmax skill.214

In this study heat wave indices were computed for the seasonal re-forecasts and real-time fore-215

casts only. For S2S runs, AT, Tmax and Tmin anomalies were considered instead of indices to216

avoid cutoff effects due to shorter forecast ranges and the minimum duration chosen for a heat217

wave to be defined. The S2S skill assessment is completed by a focus on a specific case study.218

e. Reference datasets and observational uncertainty219

Skill assessments in climate predictions are subject to uncertainties related to limited sample220

size (both in terms of re-forecast length and ensemble size), but also to the data used as a reference221

(Massonnet et al. 2016). Indeed, in order to cover the entire re-forecast period and geographical222

extension of the phenomena considered, reanalyses datasets, based on observation data assimi-223

lation with general circulation models, are often used as benchmarks. These datasets (such as224

ERA-Interim used in this study) have proven their capacity of reproducing variability of station-225

based and instrumental observations (see e.g. Dee et al. (2011)). However, they necessarily bear226

some similarities to the GCMs used in their design. Since ERA-Interim is used to initialize the227
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atmospheric component of the System 5 re-forecasts, one could also argue that skill evaluations228

against ERA-Interim do not provide a fair estimate of re-forecast skill.229

In this paper, the impact of observational uncertainty on results was accounted for by addi-230

tionally verifying re-forecasts against Berkeley Earth Surface Temperature (BEST, Rohde et al.231

(2013)) daily minimum and maximum temperature data. BEST data is derived using the Kriging232

method from a large amount of station data. It is available up to 2013, so evaluations are restricted233

to the 1993-2013 period when using BEST. Over West Africa, Barbier et al. (2017) exhibited some234

differences in the heat wave characteristics derived from BEST Tmin and Tmax data with those of235

reanalysis datasets, although limited in the case of ERA-Interim.236

Figure 1 compares the climatology over MAMJ 1993-2013 of Tmax and Tmin HWDI using237

ERA-Interim and BEST over the region of study. For Tmax, both datasets yield similar results in238

terms of spatial distribution of the HWDI, with a zonal gradient between the coasts of the Gulf of239

Guinea and northernmost latitudes. Over most of the region of study, ERA-Interim Tmax HWDI240

is slightly higher than BEST. More differences are found with Tmin HWDI, for which the BEST241

index appears to be much smoother than for ERA-Interim. This could be a consequence of the242

Kriging interpolation technique used in BEST, whilst ERA-Interim T2m data is derived from opti-243

mal interpolation of screen-level temperature from presumably fewer station observations. Further244

investigation into these aspects goes beyond the scope of this study. However, these differences245

emphasize the need for caution when evaluating a forecasting system against a unique source of246

reference data.247

3. Re-forecast quality assessment248

As previously mentioned, the assessment of re-forecast quality was done separately for the sea-249

sonal forecasting system and S2S experiments. This was motivated by the definition of the heat250
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wave indices based on both threshold exceedance and length of an event. For seasonal re-forecasts,251

we evaluate the skill of System 5 in predicting the interannual variability of seasonal indices HWDI252

and HWPP described in section d. In the S2S framework, the sampling of possible past events253

(when focusing for instance on predictability of a heat wave during week 3) in the re-forecast254

dataset is limited by the frequency of start dates. We therefore focus first on Tmin and Tmax255

prediction skill at a weekly scale, and then on a specific case study.256

a. Seasonal re-forecasts257

Supplemental Fig. S.1 shows the bias for Tmax and Tmin HWDI with respect to ERA-Interim258

and BEST indices over the re-forecast period. Despite the computation of heat wave indices with259

respect to the model Tmax and Tmin climatologies, System 5 yields far less heat wave events than260

in the reference datasets over most of West Africa. Indeed, the model often fails to maintain heat261

wave conditions for three or more consecutive days. Differences between evaluations against the262

two reference datasets are (as expected) most striking for Tmin HWDI, but at a regional scale,263

conclusions are similar for both references.264

The Spearman rank correlation coefficient (defined as the Pearson correlation of the ranks of265

the forecast and reference heat wave indices over the re-forecast period) is computed to evaluate266

the models’ ability to represent interannual variability of the heat wave indices and shown for267

Tmax and Tmin HWDI in Fig. 2. This skill measure is less sensitive to outliers and appropriate268

for discrete values such as indices based on counts as used here (Déqué 2012). We estimate a269

95% confidence interval for correlation computed for a t-distribution, accounting for dependence270

between consecutive forecasts as in Zwiers and Von Storch (1995). Dots indicate grid points with271

correlation values significantly different from zero according to this test.272
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Results from Fig. 2 can be summarized as follows: System 5 has higher skill in predicting Tmin273

HWDI anomalies than for Tmax, and skill is highest along the coast of the Gulf of Guinea, where274

biases are limited. Significant correlation values are found in very few gridpoints of the Sahel275

region in the case of Tmax HWDI, whereas more areas exhibit skill for Tmin HWDI. Very similar276

results are found in the case of HWPP indices (not shown).277

AT35 HWDI was computed for ERA-Interim and System 5 data for MAMJ 1993-2014. Figure 3278

(a) shows the ERA-Interim mean AT35 HWDI for each grid point of the region over the re-forecast279

period. Accounting for relative humidity shifts the location of the maximum HWDI southwards280

with respect to Tmin and Tmax indices. The HWDI is highest in Western Sahel around 15◦N. Not281

all areas see such heat waves occurring due to the use of absolute thresholds instead of quantiles.282

Corresponding AT35 HWDI values were computed for each member of the System 5 ensemble283

re-forecast, and Spearman rank correlation with ERA-Interim is shown in Fig. 3 (b). Areas where284

no AT35 heat wave occurred in ERA-Interim during the re-forecast period are shown in gray.285

Over areas where such events occurred, the model appears to capture the interannual variability286

of these heat waves better than those defined with exceedences of Tmax quantiles. This is likely287

linked to the higher skill of the model in representing daily mean temperatures with respect to288

daily maximum temperatures over the region at a seasonal time scale (not shown).289

At a regional scale, results over the Sahel region (10◦N-20◦N; 10◦W-20◦E) confirm that skill290

is higher for Tmin heat wave occurrences than for Tmax. Levels of skill similar to that of Tmin291

are found when computing AT35 heat wave indices. Figure 4 shows the distribution of ensemble292

re-forecasts and the corresponding ERA-Interim value in MAMJ 1993-2014 for all six heat wave293

indices spatially averaged over the Sahel region. Correlation between the ensemble mean and294

the ERA-Interim indices are shown in the top left corner of each graph. As could be expected295

by construction, results for HWDI and HWPP indices are quite similar, as these indices are very296
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highly correlated (over 0.96) in both reference data and model re-forecasts. Correlation reaches297

over 0.7 for Tmin heat wave indices and over 0.65 for AT35. This implies that although at a298

grid point level, the model does not manage to capture interannual variability, it does succeed in299

reproducing part of the variability of regionally-aggregated indices.300

Some peaks in interannual variability are reasonably well re-forecast by System 5, such as 1998301

and 2010. These events follow a winter El Niño event in the tropical Pacific. Moron et al. (2016)302

found using reanalysis datasets and station data that MAMJ heat wave indices over the region303

were highly correlated with indices characterizing the El Niño-Southern Oscillation phenomenon304

(ENSO) in the preceding winter season. This link could be explained by a general warming of305

the tropical upper troposphere following a strong El Niño event, which then propagates back to306

the surface at sub-seasonal to seasonal time scales, and also to the advection of warm mixed-layer307

anomalies formed over the tropical North Atlantic by low-level winds (Moron et al. 2016; Oueslati308

et al. 2017). Since ENSO dominates interannual variability and is a prominent source of seasonal309

forecasting skill, our results are consistent with these hypotheses, and suggest the existence of310

conditional skill in our seasonal forecasting system following a strong El Niño event. The pro-311

nounced 2015/16 El Niño event therefore triggered the provision of real-time forecasts in MAMJ312

2016 in the framework of the French Agence Nationale de Recherche (ANR) ACASIS project313

(https://acasis.locean-ipsl.upmc.fr), which focuses on the physical origins, predictabil-314

ity, variability and evolution of Sahelian heat waves and their impact on human health.315

b. Subseasonal re-forecasts316

As shown in the previous section, seasonal forecasting skill is limited for MAMJ over the West317

African region, but higher when considering area-averaged heat wave indices over the Sahel. Sea-318

sonal forecasts can provide early indications of above-normal heat wave frequency and duration,319
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but some studies on the uptake of climate predictions by service providers suggest that the sub-320

seasonal range is also very relevant for action to alleviate consequences of severe heat on human321

activities and health (White et al. 2017).322

Figure 5 shows the Météo-France S2S system correlation with ERA-Interim for apparent tem-323

perature at lead times week 1 (days 4-10), week 2 (days 11-17), week 3 (days 18-24) and week324

4 (days 25-31) for 1 April and 15 April start dates of the 22-year re-forecast period. Correlation325

is computed after removing a linear trend. A substantial drop in correlation is found from week326

2 onwards, as expected when moving beyond the deterministic range of predictability, although327

most gridpoints of the West African region still exhibit significant skill at this lead time. Skill is328

found mainly over lower latitudes for weeks 3 and 4, although some grid points over Sahel still329

exhibit significant skill. Similar results are found for Tmin and Tmax (not shown). These results330

suggest System 5 S2S predictions could be used, although with caution, in an early heat wave331

warning system. Moreover, windows of opportunity for forecasts at these extended time ranges332

may be provided by planetary waves and teleconnections. This is an area for future work beyond333

the preliminary assessment presented here, and could be led using a multi-model framework with334

the S2S database (Vitart et al. 2016).335

4. 2016 real-time forecasts336

As shown in the previous section with evaluations over 1993-2014 re-forecasts, the Météo-337

France forecasting systems exhibit modest skill in forecasting Tmin, Tmax or AT anomalies at338

sub-seasonal and seasonal time scales, and consequently heat wave occurrences over the West339

African region during the MAMJ season.340

However, signal related to ENSO seems to be captured by System 5 at a seasonal time scale.341

The 2015/16 El Niño was one of the strongest of the last three decades (L’Heureux et al. 2016),342
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and presented a unique opportunity to assess in real-time the conditional skill in El Niño years of343

heat wave forecasts with System 5.344

As done over the re-forecast period, we computed MAMJ HWDI and HWPP for Tmin and Tmax345

in each of the 51 ensemble members initialized end of January 2016. Information was provided on346

the ACASIS website mid-February to the project partners, in the shape of deterministic forecasts347

(using the ensemble mean anomalies) and probabilistic forecasts.348

When ERA-Interim data was available a few months after the MAMJ season, heat wave statistics349

were computed and verification carried out with this reference data so as to assess the models’350

success or failure in forecasting the 2016 season.351

For the S2S system, we focused a posteriori on a particular event as a case study, which occurred352

in April 2016 over the Matam area in Senegal.353

a. Seasonal forecasts for MAMJ354

The forecast and ERA-Interim HWDI anomalies in MAMJ 2016 with respect to the 1993-2014355

re-forecast period are shown in Fig. 6. Anomalies for HWPP are shown in supplemental Fig. S.2356

and give very similar results. As expected from the strong ENSO signal end of January in the357

tropical Pacific, the model forecasts at a regional scale a strong positive anomaly in heat wave358

duration and number of heat waves during MAMJ 2016, both in Tmax and Tmin. For Tmax359

HWDI, some regions towards the east of the domain are forecast to experience near-normal or360

even slightly cool conditions. When comparing to indices derived from ERA-Interim, it appears361

that regional contrasts between areas with more heat wave days and less heat wave days are not362

reproduced by the model. However, the anomaly over the region was on average higher in Tmin363

than in Tmax, and this characteristic was reasonably well captured in the forecast.364
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As done previously for the re-forecast, indices are averaged over the Sahel region and results365

shown in the orange box-and-whisker plots in Fig. 4. The corresponding MAMJ 2016 ERA-366

Interim value for each index is shown in blue. Over Sahel, unprecedented values are found for367

Tmin HWDI and HWPP (Fig. 4 (b,e)), whereas Tmax indices are higher than average but lower368

than recent seasons such as 2010 and 2013 (Fig. 4 (a,d)). It could be tempting to state that the369

2016 Tmax indices forecast by System 5 were spot on, but this disregards the fact that, on average,370

the Tmax indices are underestimated in the re-forecast, and a straightforward bias correction to371

compute heat wave index anomalies leads to an overestimation of the anomaly observed with372

ERA-Interim. In the case of AT35, ERA-Interim indices were comparable to values for 2010 (Fig.373

4 (c,f)), while the ensemble forecast distribution for HWDI was clearly shifted towards very high374

values, with the interquartile range predicting 19 to 24 days in AT35 heat wave conditions on375

average over the area.376

We remind the reader that System 5 forecasts consist in 51 ensemble members, which could377

increase the range with respect to that of a 15-member re-forecast ensemble. It is therefore difficult378

to directly compare the boxplots of the ensembles.379

b. April 2016 case study380

In this context of higher than average Tmax heat wave occurrences and record-breaking Tmin381

heat wave indices, we focus on a particular event as a case study for S2S prediction with the382

CNRM-CM model. April 2016 was the warmest April month on record since 1910 for the African383

continent, according to NOAA (NOAA NCEI 2016).384

The Matam region in Senegal experienced a prolonged period of very warm temperatures in mid-385

and late April, reaching locally above 44◦C for eleven consecutive days at the Matam SYNOP386

station from 12 to 22 April (period called CS for ”case study”). As depicted in the ERA-Interim387

18



weekly AT in Fig. 7, the warm anomalies were not restricted to the Matam area delimited by the388

purple box and defined in this paper between 14 and 17◦N and 14 and 11◦W (a zoom is provided389

in supplemental Fig. S.3). These weekly anomalies also show that cold AT anomalies preceded390

the event during the first week of April. Figure 7 also shows the evolution with the initialization391

dates of weekly anomalies forecast by the S2S system for three target weeks around the case study392

period.393

Based on skill evaluations shown for AT in Fig. 5, we expect the model to capture anomalies for394

the first week after the initialization date, but not necessarily beyond. Results for the case study395

period shown in Fig. 7 show that this is the case for April 2016. Forecasts for the week from 11396

to 17 April (second row) are very similar for all start dates before 7 April, and if they suggest the397

possibility of warm anomalies over Sahel, they overestimate the spatial extent of these anomalies398

and systematically forecast cold anomalies in the Northwest corner of the domain, possibly due to399

the model forecasting cold sea-surface temperature anomalies in the Atlantic. The 24 March and400

31 March initial conditions were cool in terms of AT over this area (not shown), and both forecasts401

seem to have persisted these cool anomalies too long before transitioning to warmer-than-average402

ATs during the week from 18 to 24 April. Results for Tmin and Tmax bear many similarities with403

AT (see supplemental Fig. S4).404

To further assess the model ability to forecast the heat wave experienced in Matam, we average405

Tmax, Tmin and AT values over the Matam box. Figure 8 shows distributions over 1993-2014406

of anomalies with respect to climatology for 11-day averages over the CS dates over the Matam407

region in ERA-Interim (dashed black line) and the S2S re-forecasts initialized on 15 March and 1408

April (dashed blue lines). For Tmax and AT, anomaly distributions differ very little with re-forecast409

lead time, whereas they are sharper for 1 April initializations in the case of Tmin. For the 2016410

case study, the ERA-Interim 11-day average is marked by a black triangle. For all three variables,411
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the event ranks as the warmest with respect to the reference period. 51-member ensemble forecast412

distributions are shown in colored full lines for the three start dates that cover the complete CS413

period. For all three variables, a shift in the distribution with respect to the re-forecast values is414

found for all start dates, likely due to warm background conditions related to ENSO. The 7 April415

start, five days before the beginning of the event, correctly anticipates the very high anomalies416

for CS. However, a shift in the distributions and warm tails beyond the values of the 1993-2014417

re-forecasts (which include warm years in the recent period such as 2010) does confirm that warm418

to very warm events can be partly anticipated at these longer lead times.419

The Matam box used in this study is quite small with respect to the horizontal resolution of the420

coupled system. Results for weekly anomalies on the larger domain shown in Fig. 7 imply that421

similar conclusions would be drawn by extending the study to a larger area of Sahel concerned by422

this given heat wave. The sensitivity of results to the choice of the case study period was tested423

by restricting the case study dates to 12-17 April. Results in terms of Tmin and Tmax anomaly424

distributions are shown in supplemental Fig. S.4, and are consistent with those of the longer case425

study period.426

Figure 9 shows mean sea-level pressure anomalies over the CS period for ERA-Interim and the427

three start dates of the 2016 S2S forecasts covering the event. Purple boxes highlight the area428

used for computing weather types discussed in section 5. During the CS, high pressure anomalies429

over most of West Africa and the Mediterranean Sea were observed, as well as a low-pressure430

system centered over the Azores. In the System 5 S2S forecasts, as expected, the ensemble mean431

sea-level pressure anomalies are close to zero for the longer lead times due to increased noise.432

Even for the 7 April initialization, the model misses part of the signal over the West African433

domain, underestimates the high pressure anomalies over the Mediterranean and misplaces the434
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low pressure anomalies over the Atlantic and Western Europe. This suggests that the system was435

unable to capture the large scale circulation anomalies at play during this given heat wave event.436

Further investigation into links between circulation and temperature anomalies over the region437

and their representation by System 5 is described in what follows. We consider the use of a438

weather type approach (Robertson and Ghil 1999; Muñoz et al. 2015) to examine links between439

the circulation forecast by the model and daily temperature anomalies, and further characterize the440

2016 season and case study with respect to both the 1993-2014 reference period, and the ERA-441

Interim reference data for 2016.442

5. Weather type approach443

a. Methodology and results over 1993-2014444

In the scope of the ACASIS project, weather types (WTs Moron et al. 2008) were computed to445

characterize the intra-seasonal variability of daily minimum and maximum temperature over West446

Africa and better understand relationships between near-surface temperature and synoptic weather447

patterns (Vincent Moron and colleagues, personal communication). The box used to define the448

WTs covers latitudes from 0 to 30◦N and longitudes from 40 W to 40◦E and is represented in449

purple in Fig. 9. The WTs are derived by first computing empirical orthogonal functions of450

standardized 925 hPa winds and mean sea level pressure from the NCEP reanalysis over the 1967-451

2014 period, and keeping the first nine EOFs so as to account for 50% of the variance. The iterative452

k-means clustering approach is used to partition the principal component space into k different453

WTs, minimizing the sum of within-cluster variance. The number of WTs k = 7 is determined by454

the classifiability index as in Michelangeli et al. (1995). Figure 10 (a) shows the sea-level pressure455

anomaly composites for each of the seven WTs found, restricted to the MAMJ 1993-2014 period.456
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WT3 and WT7 SLP anomaly composites present a strong negative pattern correlation. Other WT457

composites such as WT2 and WT4 exhibit centers of action located mainly outside the domain458

used to compute the WTs, which are reminiscent of Rossby wave propagation.459

We then attributed a WT to each day of the MAMJ 1993-2014 seasons in ERA-Interim (and460

each member in the System 5 re-forecasts) by projecting the SLP and wind anomalies onto each461

WT composite, and selecting the closest WT in terms of Euclidian distance. A clear impact on462

temperature anomalies over West Africa and Sahel is found. Figure 10 (b) and (c) shows the com-463

posites of ERA-Interim and System 5 Tmax anomalies for each WT. The SLP-Tmax relationship is464

clearly non linear, since WT3 and WT7 Tmax composites do not exhibit the same negative pattern465

correlation as for SLP. Some differences in the Tmax response are found between the model and466

reference data, most striking in WT1 for which the model extends the cold anomalies too far West,467

and WT6 and WT7 for which both the amplitude and spatial location of the Tmax anomalies are468

different from ERA-Interim in the forecasts. Yet, the model does manage to properly reproduce469

Tmax anomaly composites for each WT. Very similar results are found for Tmin (not shown).470

This WT approach is used to further characterize the forecasts for 2016, both the MAMJ 2016471

seasonal forecast issued in February, and the S2S forecasts of the CS period.472

b. MAMJ 2016473

Figure 11 (a) shows the WT frequency histograms for the MAMJ season for ERA-Interim474

(shades of blue) and System 5 (shades of red). Climatology over 1993-2014 is shown in pale475

colors, whereas the MAMJ 2016 season is shown in bolder colors. System 5 has reasonable cli-476

matological values for WT frequencies, most often differing from ERA-Interim by less than 5477

%. Anomalies for 2016 (departures from respective climatologies) show that WT3 was far more478

frequent than typically observed, while the number of days in WT7 was one third of the climato-479
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logical average. On the other hand, System 5 strongly favored WT7, reaching a frequency over480

30% of the MAMJ season. By referring to the Tmax temperature composites for WT3, this could481

explain the cooler-than-normal conditions in ERA-Interim for 2016 over the northwestern corner482

of the region studied as well as around 10◦N despite the strong ENSO forcing at play. System 5483

failed to capture this, and projected warm conditions almost everywhere over the region, consistent484

with composite patterns for WT7.485

One possible use of WTs would be in a statistical-dynamical forecasting approach, using System486

5 forecasted WT frequency anomalies to construct temperature anomaly forecasts instead of using487

direct model outputs for temperature. However, in terms of predictability of WT frequency at488

a seasonal time scale, no significant skill is found, save for WT6 (not shown). No additional489

skill can therefore be expected using such an approach. WTs are therefore used here as a way of490

interpreting the circulation types preferred by the system for the 2016 season considered.491

c. Case study492

WTs were also computed for the S2S forecasts of the 12-22 April case study dates. WT fre-493

quencies for CS dates over the 1993-2014 reference period and for 2016 are shown in Fig. 11 (b).494

The corresponding statistics are found in supplemental Table S.1. Note that the ERA-Interim and495

System 5 climatologies differ from Fig. 11 (a) as we focus here on a 11-day subset of the 122-day496

MAMJ season. For System 5, small differences between the 15 March and 1 April climatologies497

result from both sampling errors and forecast lead time. The model underestimates the occurrence498

of WT6 and overestimates the occurrences of WT1 and WT7 over the re-forecast period, but other499

WT frequencies are rather well reproduced.500

For the 2016 CS anomalies, we use Klee diagrams (Muñoz et al. 2016) to depict the sequences501

of WTs predicted by the ensembles according to the forecast initialization dates, as well as in502
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ERA-Interim (Fig. 12). WTs 2, 4 and 7 are not represented in the ERA-Interim values for the503

2016 CS (as shown in Fig. 11 (b) and 12 (a)) as the period spans only 11 days, and WT6 was504

observed for 4 consecutive days from 14 April until 17 April. The S2S ensembles do predict505

non-zero frequencies of occurrence for each WT over the CS period, even in the case of the latest506

initialization on 7 April. In contrast to the MAMJ seasonal forecast, the system predicts (correctly)507

for each start date a lower frequency of WT7 with respect to climatology. However, the WT4508

frequency is strikingly overestimated for all start dates except 7 April. WT5 frequencies are off509

even in the latest initialization, likely due to the fact that this WT occurs mainly at the end of the CS510

period, beyond the typical deterministic range. The Klee diagram for 7 April initialization (Fig.511

12 (b)) provides additional insight into the medium-range predictability of the WTs associated512

with the case study. In particular, only one ensemble member manages to capture the WT3-WT5513

sequence on 12-13 April, whereas most predict WT6 for 2 days or more between 14 and 17 April,514

suggesting that the anomalies were then more pronounced and persistent (and therefore, closer to515

an actual weather regime pattern) than conditions on the first two days of the CS.516

6. Main conclusions517

In this study, we investigated the seasonal and sub-seasonal skill of Météo-France System 5518

in forecasting spring heat waves over West Africa and Sahel. For the seasonal range, heat wave519

duration and number of days per March to June season were computed for minimum and maximum520

daily near-surface temperature quantile threshold exceedences and compared to statistics obtained521

with the ERA-Interim and BEST reference datasets. We also studied the modulation by relative522

humidity by computing a heat wave index based on mean daily apparent temperature threshold523

exceedence. The coupled system exhibits limited gridpoint correlation over the re-forecast period,524

consistent with the skill of mean seasonal values for the physical variables considered. However,525
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the interannual variability of spatially averaged Sahelian heat wave indices are found to be quite526

well represented at the seasonal time scale. Skill is generally higher for minimum temperature and527

apparent temperature indices than for maximum temperature. For the S2S range, we focused on528

apparent temperature anomalies at a weekly time scale, and found evidence of some modest skill529

beyond the deterministic range. Results found in terms of predictability at the sub-seasonal and530

seasonal scales are consistent with previous works evaluating the skill of state-of-the-art systems531

in representing temperature extremes (Pepler et al. 2015; Hudson et al. 2011).532

The 2016 season presented a unique opportunity to test the system in a real-time framework,533

with a strong El Niño forcing in the preceding winter. Consistent with this strong forcing, the534

forecasting system predicted high probabilities for heat wave indices exceeding the top quintile535

of the 1993-2014 climatology over most areas of West Africa. This concurs with conclusions536

from Moron et al. (2016) based on observational datasets, which linked heat wave occurrence over537

the region with ENSO. As found for the re-forecast evaluations, the model succeeded better in538

forecasting an area-averaged anomaly than discriminating the geographical locations of the heat539

waves within the region of interest. A case study evaluation for the Matam area in Senegal for540

April 2016 illustrated the model capacity in anticipating a particularly warm event.541

A weather type approach was used as a means of interpretation of model mismatch with ob-542

servations in terms of temperature anomalies. Weather types were computed based on sea-level543

pressure and near-surface wind anomalies over the region. These projections shed light onto the544

tendencies in the coupled system simulations to favor specific synoptic weather patterns, there-545

fore translating into incorrect location of surface temperature anomalies, although the composite546

surface temperature response to each weather type in the model is satisfactory.547

Results found in this study are based on a re-forecast period of 22 years, using 15-member548

ensembles, and decadal variability in skill cannot be excluded. We stress that the 2016 season549
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forecasts should be interpreted with the modest skill of the system in mind, as well as the specific550

context of a strong ocean forcing in the tropical Pacific. Conversely, 2017 forecasts were issued in551

the scope of the project but no clear signal was found over the area. To further assess the condi-552

tional skill of a forecasting system, much longer re-forecast periods and, ideally, larger ensemble553

sizes are needed, as well as idealized studies to assess the forecasting system’s sensitivity to spe-554

cific initial conditions. This leaves room for many future improvements in the understanding and555

forecasting of such events at these longer time scales.556

Origins of model limitations over the region are currently being investigated. The coupled sys-557

tem exhibits very poor skill in representing key variables known to affect minimum and maximum558

surface temperature over the area, especially in pre-monsoon seasons, such as cloud cover and559

heat fluxes which play a key role in modulating larger-scale variability (Oueslati et al. 2017). At560

Météo-France, a new seasonal forecasting system with enhanced physical formulation in the at-561

mospheric component of the GCM for clouds, convection and radiation has been developed and562

will be operational in the framework of Copernicus Climate Change Services (C3S). Future work563

includes assessing the skill in this new system compared to System 5.564

Although many (anticipated) limits in S2S and seasonal skill are found with the current Météo-565

France System 5, this study examines the possibility of using coupled systems for seasonal and566

sub-seasonal prediction of extreme heat over the West African region. Future improvements may567

originate from the use of multi-model combination and an improved calibration of model outputs568

(beyond straightforward bias removal). This is a goal that could be reached in years to come569

with international initiatives such as Copernicus C3S and the S2S project database. Then, uptake570

of reliable forecasts as input for early-warning health risk reduction could enable an improved571

anticipation of heat-related risks for human health in a context of increased vulnerability related572

to climate change.573
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Déqué, M., S. Calmanti, O. B. Christensen, A. Dell Aquila, C. F. Maule, A. Haensler, G. Nikulin,618

and C. Teichmann, 2017: A multi-model climate response over tropical Africa at +2◦ C. Cli-619

mate Services, doi:10.1016/j.cliser.2016.06.002.620

Doblas-Reyes, F. J., J. Garcı́a-Serrano, F. Lienert, A. Pintó Biescas, and L. R. L. Rodrigues, 2013:621
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TABLE 1. Characteristics of the seasonal and sub-seasonal forecasts with Météo-France System 5 discussed

in this paper.

752

753

Re-forecasts (1993-2014) Real time forecasts

Common features Ensemble size 15 51

Initial conditions Atmosphere/land: ERA-Interim Atmosphere/land: ECMWF analysis

Ocean/sea ice: Mercator Ocean PSY2G2V3 Mercator Ocean upscaled op. analysis

Seasonal Frequency 1st of each month Two Wednesdays

Forecast length 7 months 7 months

Ensemble generation stochastic dynamics stochastic dynamics + 1 week lag

S2S Frequency 1st and 15th of each month Each Thursday

Forecast length 60 days 32 days

Ensemble generation stochastic dynamics stochastic dynamics
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FIG. 1. Climatologies of MAMJ Tmax (a,c) and Tmin (b,d) HWDI computed with ERA-Interim data for

1993-2014 (a,b) and BEST data for 1993-2013 (c,d). The reference period for BEST is restricted to 1993-2013

due to data availability.
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FIG. 2. Spearman rank correlation of MAMJ System 5 re-forecasts for Tmax (a,c) and Tmin (b,d) HWDI

with respect to indices derived from ERA-Interim (a,b) and BEST (c,d) daily data. Evaluation against BEST is

for 1993-2013. Dots indicate correlation values significant at a 95% level as estimated by a t-distribution (see

text).
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FIG. 3. (a) Climatology of MAMJ AT35 HWDI (see text) for ERA-Interim over the 1993-2014 period. (b)

Spearman rank correlation of MAMJ System 5 re-forecasts for AT35 HWDI with respect to the index derived

from ERA-Interim over 1993-2014. Dots indicate correlation values significant at a 95% level as estimated by a

t-distribution (see text). Gray areas show regions where no AT35 heat waves are found with ERA-Interim data.
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FIG. 4. Box and whisker plots of the ensemble re-forecasts of Tmax HWDI (a) Tmin HWDI (b) AT35

HWDI (c) and respective HWPP indices (d-f) for MAMJ 1993 to 2014 (in red). For each plot, boxes show the

interquartile range and whiskers the full range of the 15-member System 5 ensemble (up to 1.5σ ). Outliers are

shown with circles. The blue line shows indices derived from ERA-Interim, and the Pearson time correlation

with the ensemble mean re-forecast index over the 1993-2014 period is shown in the top left corner of each plot.

The orange box and whiskers is the 51-member MAMJ 2016 forecast, and a blue dot shows the corresponding

ERA-Interim index.

820

821

822

823

824

825

826

43



FIG. 5. (a-d) Weekly mean apparent temperature correlation against ERA-Interim over the re-forecast period

according to lead time (weeks 1 to 4, respectively) for 1 April and 15 April 1993-2014 start dates in the Météo-

France S2S contribution based on System 5. Dots indicate correlation values significant at a 95% level as

estimated by a t-distribution (see text).
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FIG. 6. Real-time System 5 forecast anomalies for Tmax and Tmin HWDI for MAMJ 2016 initialized end

of January, with respect to the re-forecast period (a,c) and verification using ERA-Interim daily data (b,d);

probabilistic forecast based on counts of System 5 ensemble members exceeding the highest quintile of the re-

forecast for MAMJ 2016 initialized end of January (e,g) and actual observed quintile of ERA-Interim minimum

and maximum temperature HWDI (f,h).
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FIG. 7. Mean daily apparent temperature anomalies over West Africa for target weeks 4-10 April, 11-17

April and 18-24 April 2016 before and during the case study period (from top to bottom along the y-axis) in

the S2S forecasts initialized on 17 March, 24 March 31 March and 7 April 2016 (from left to right along the

x-axis), and corresponding ERA-Interim anomalies (right column). Anomalies are computed with respect to

model re-forecast climatologies for S2S forecasts, and ERA-Interim 1993-2014 climatology for ERA-Interim.
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FIG. 8. Tmax (a) Tmin (b) and daily mean AT (c) anomaly distributions over the Matam region for the case

study dates (12-22 April) for ERA-Interim 1993-2014, March 15 and April 1 re-forecasts, and three start dates

preceding the 2016 case study event. Anomalies are computed for the 2016 S2S forecasts with respect to a

weighted linear combination of the climatologies of the two closest re-forecast start dates for the CS dates,

depending on the forecast initialization date.
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FIG. 9. Mean sea level pressure anomalies with respect to 1993-2014 for 12-22 April 2016 for ERA-Interim

(a) and different S2S start dates (b-d).
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FIG. 10. Column (a): sea-level pressure (SLP) composite in NCEP data for each weather type (WT) 1 to 7

obtained over the West African - Sahel region. Columns (b-c): maximum near-surface temperature composites

for each WT for MAMJ 1993-2014 in ERA-Interim (b) and System 5 re-forecasts initialized end of January (c).
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FIG. 11. WT frequency in re-forecast runs and for 2016 (a) in MAMJ (System 5 re-forecasts initialized end

of January) and (b) for the 12-22 April 2016 case study (S2S runs based on System 5).
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FIG. 12. Klee diagrams of the WTs for the 12-22 April 2016 case study in (a) ERA-Interim and (b-d) S2S

ensemble predictions initialized on three consecutive start dates.
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