Preliminary work on the Statistical Emulation of a Regional Climate Model

Antoine Doury, Samuel Somot, Aurélien Ribes, Lola Corre

One of the objectives of the FPS-Convection:

Is it possible to replace costly convection permitting experiments with physically defensible statistical downscaling approaches such as "convection emulators" that mimic CPMs and are fed by output of conventional scale RCMs?

Why do we need statistical emulator?

Why do we need statistical emulator?

Idea: Combine both downscaling approaches to fill up the [SCENARIO x GCM x RCM] matrix to cover the full range of uncertainty at a reasonable cost.

Local

Scale

Idea: Combine both downscaling approaches to fill up the [SCENARIO x GCM x RCM] matrix to cover the full range of uncertainty at a reasonable cost.

Idea: Combine both downscaling approaches to fill up the [SCENARIO x GCM x RCM] matrix to cover the full range of uncertainty at a reasonable cost.

- Advantages:
 - Learn the future relationship (no question of transferability) and on the whole grid of the RCM.
 - Computationally cheaper than RCMs.
- Limitations:
 - Strongly dependant on the quality of RCM
 - 1 emulator by RCM

Idea: Combine both downscaling approaches to fill up the [SCENARIO x GCM x RCM] matrix to cover the full range of uncertainty at a reasonable cost.

To start: 1 variable: TAS

1 grid point : Montpellier

	8	BCM	1 CNR	M HC-lo	HC-me	d HC-hi	N
E DI		BCM C1	NRM H	C-lo HC-	med H	C-hi MP	I
	BCM	CNRM	HC-lo	HC-med	HC-hi	MPI	1
C4I					X		
NRM		X					
MI	X	X				X	
ETHZ				X			
IC-lo			X				
IC-med				X			
IC-hi					X		
CTP						X	l
NMI						X	I
METN	X			X			
ИРI						X	ľ
MHI	X		X			X	

- Famous machine learning algorithm (classification, regression).
- Could be a Statistical Downscaling method.
- Based on:

Regression Trees

Boosting

Regression Trees

$$\overbrace{(\,X_i\ ,\ Y_i\)_{i\in\{1,..,N\}}}$$

$$RSS = \sum_{i \in A} (y_i - ar{y}_A) + \sum_{i \in B} (y_i - ar{y}_B)$$

New X*: Goes through the tree, Ends up in a region R

$$\widehat{Y^*} = \overline{Y_R}$$

Boosting

Idea: Boost the performances of a weak model by giving a stronger weight to wrongly predicted examples.

- Take randomly 65 % of the observations
- Train a first tree
- Make prediction for the 25% others
- Give a strong weight to the wrong predicted examples.

At the end I trained M models and the final prediction is the mean of each prediction.

DATA

- X: GCM outputs on a chosen domain
 - o 4 altitude fields: ZG, TA, HUS, (UA,VA) at 850, 700 and 500 hPa
 - 3 surface variables : TAS, PR, (UAS,VAS)
 - on the red domain centered in Montpellier ([-5,10]E x [35,50]N)
 - ⇒ for each of them we perform PCA and keep 20 components
 - o GHG
 - \circ 2 cosinus and sinus vectors to control the seasonality $cos(\frac{2*\pi*day}{365})$
 - \Rightarrow X_t of size ~150

- Y: RCM output ⇒ Surface Temperature at the grid point of Montpellier.
 - Centered mode : $Y = TAS_{RCM,Mpl} TAS_{GCM,Mpl}$

Common approach to evaluate statistical downscaling methods:

An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment

Transferability in the future climate of a statistical downscaling method for precipitation in France

G. Dayon1, J. Boé1, and E. Martin2

SOME PITFALLS IN STATISTICAL DOWNSCALING OF FUTURE CLIMATE

JOHN R. LANZANTE, KEITH W. DIXON, MARY JO NATH, CAROLYN E. WHITLOCK, AND DENNIS ADAMS-SMITH

- Common approach to evaluate a statistical downscaling approach:
 - VALUE project (Maraun et. al 2015),
 - Lanzante et al. 2018.
 - Dayon et al. 2015.
- X from a 'upscaled' RCM to avoid RCM GCM chronology mismatch.

- Common approach to evaluate a statistical downscaling approach:
 - VALUE project (Maraun et. al 2015),
 - Lanzante et al. 2018.
 - Dayon et al. 2015.
- X from a 'upscaled' RCM to avoid RCM GCM chronology mismatch.

- Common approach to evaluate a statistical downscaling approach: VALUE project (Maraun et. al 2015),
 Lanzante, Dixon, Nath 2018.
- X from a 'upscaled' Aladin to avoid chronology distorsion between RCM and GCM.
- ALADIN 12 km simulation, forced by CNRM CM5 over the period 2006-2100 with scenario RCP4.5.
 Training set: 70% of the years, Testing set: 30% of the years

even	DJF	MAM	JJA	SON	ANN
Rmse (°C)	0.591	0.515	0.648	0.539	0.575
Cor	0.980	0.976	0.968	0.979	0.976
bias (°C)	0.018	0.011	0.058	-0.017	0.018
pdf	0.039	0.030	0.047	0.028	0.020
extrems	0.126	0.140	0.142	0.273	0.106
extrems bas	0.222	0.099	0.141	0.082	0.137

- Common approach to evaluate a statistical downscaling approach: VALUE project (Maraun et. al 2015),
 Lanzante, Dixon, Nath 2018.
- X from a 'upscaled' Aladin to avoid chronology distorsion between RCM and GCM.
- ALADIN 12 km simulation, forced by CNRM CM5 over the period 2006-2100 with scenario RCP4.5.
 Training set: 70% of the data, Testing set: 30% of the data

Conclusions:

- XGBOOST works well as a Statistical Downscaling method,
- **♦** Able to learn a non-stationary relationship.

Application: Downscaling of real GCM

2 approaches / philosophies :

X from the upscaled RCM:

- Use the model train in the perfect model
- Focus only on the downscaling action of the RCM
- A too perfect relationship?

X from the GCM:

- More intuitive approach : learn on a pair (GCM, RCM)
- 'Learn' the chronology modification
- More difficult to apply to an other GCM ?

Application: Downscaling of real GCM

2 approaches / philosophies :

X from the upscaled RCM:

- Use the model train in the perfect model
- Focus only on the downscaling action of the RCM
- A too perfect relationship?

Only the way to train the models changes

- Same variables in X
 - Same Y: $TAS_{RCM,Mpl} TAS_{GCM,Mpl}$

Application to new GCM: We give the same data to both models.

Training sample: RCP 4.5, 2006-2100

X from the GCM:

- More intuitive approach : learn on a pair (GCM, RCM)
- 'Learn' the chronology modification
- More difficult to apply to an other GCM ?

Application: Downscaling of real GCM HISTORICAL: 1951 - 2005

Application: CNRM-CM5, RCP 8.5

Climate change response 2071-2100 vs 1970-2000

	Annual	DJF	JJA
RCM	3.9 °C	3.4 °C	4.7 °C
X UP_RCM	3.7 °C	3.4 °C	4.2 °C
X GCM	3.9 °C	3.4 °C	4.5 °C
GCM	3.6 °C	3.3 °C	4.2 °C

Conclusion & Perspective

- Building a statistical emulator of a RCM seems feasible
 - Good reproduction of the mean state
 - Some problems with the extremes, warm extremes specially
- Should be tested with other GCMs
- Need to think about multi-variable and 2 Dimensions
- Construction of different models :
 - Neural Network : CNN, LSTM
 - o A more complex approach based on a better decomposition of the signal
- Application to CPMs.

Conclusion & Perspective

- Building a statistical emulator of a RCM seems feasible
 - o Good reproduction of the mean state
 - Some problems with the extremes, warm extremes specially
- Should be tested with other GCMs
- Need to think about multi-variable and 2 Dimensions
- Construction of different models :
 - Neural Network : CNN, LSTM
 - o A more complex approach based on a better decomposition of the signal
- Application to CPMs.
 - ➤ If you are running simulations, it would be nice to save some altitude variables.