Preliminary work on the
Statistical Emulation of a
Regional Climate Model

Antoine Doury, Samuel Somot, Aurélien Ribes, Lola Corre

1C>} m European Clir:r\ahe Prediction system




One of the objectives of the FPS-Convection:

Is it possible to replace costly convection permitting experiments with physically
defensible statistical downscaling approaches such as “convection emulators” that mimic
CPMs and are fed by output of conventional scale RCMs?
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Emulation of Regional Climate Mode

Idea : Combine both downscaling approaches to fill up the [SCENARIO x
GCM x RCM ] matrix to cover the full range of uncertainty at a
reasonable cost.

Y = F(X)

Large Scale
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e Advantages:
m Learnthe future relationship (no question of transferability) and on
the whole grid of the RCM.
m Computationally cheaper than RCMs.
e Limitations:
m Strongly dependant on the quality of RCM
m 1emulator by RCM
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Tostart: 1variable: TAS
1 grid point : Montpellier
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XGBOOST

e Famous machine learning algorithm ( classification, regression) .
e Could be a Statistical Downscaling method.

e Basedon:

Regression Trees Boosting
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XGBOOST

Regression Trees

RSS = ZieA(yi —§a)+ ZieB(yi ~ )
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XGBOOST

Regression Trees

RSS = ZiEA(yi —§a)+ Zz’eB(yi ~ )

X7 < 2
e New X*:
Goes through the tree,
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XGBOOST

Regression Trees Boosting
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Idea : Boost the performances of a weak model by
giving a stronger weight to wrongly predicted

examples.

Take randomly 65 % of the observations
Train a first tree

Make prediction for the 25% others

Give a strong weight to the wrong predicted
examples.

X! < 2
‘ X7 < 2] 3 ‘ X7 < 2

At the end | trained M models and the final
‘ ‘ ‘ . . . . . ‘ ‘ prediction is the mean of each prediction.



DATA

e X :GCM outputs on achosen domain

4 altitude fields : ZG, TA, HUS, (UAVA) at 850, 700 and 500 hPa

3 surface variables : TAS, PR, (UAS,VAS)

on the red domain centered in Montpellier ([-5,10]E x [35,50]N)
for each of them we perform PCA and keep 20 components

GHG

UOOU’OOO

2 cosinus and sinus vectors to control the seasonality cos(

X _tof size ~150

2%xday )
365

e Y :RCMoutput = Surface Temperature at the grid point of Montpellier.

Centered mode:

Y =TASgem vy — TAScom wpi




Validation in Perfect Model framework

e Common approach to evaluate statistical downscaling methods:

g e mgs| e | sy | e Transferability in the future climate of a statistical downscaling
e — method for precipitation in France
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Validation in Perfect Model framework

Common approach to evaluate a statistical downscaling approach::

[ J
° VALUE project (Maraun et. al 2015),
° Lanzante et al. 2018.
e Dayonetal.2015.
e Xfroma‘upscaled’ RCM to avoid RCM - GCM chronology mismatch.
Z500 from the RCM Z500 from the upscaled RCM
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e Common approach to evaluate a statistical downscaling approach :
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Validation in Perfect Model framework

TAS Time series 2100 montpellier (MPL) PDFs TAS montpellier (MPL)

30

Common approach to evaluate a statistical downscaling approach : VALUE project (Maraun et. al 201
Lanzante, Dixon, Nath 2018.
X from a ‘upscaled’ Aladin to avoid chronology distorsion between RCM and GCM.

ALADIN 12 km simulation, forced by CNRM - CM5 over the period 2006-2100 with scenario RCP4.5.
Training set : 70% of the years, Testing set: 30% of the years
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Validation in Perfect Model framework

e Common approach to evaluate a statistical downscaling approach : VALUE project (Maraun et. al 201
Lanzante, Dixon, Nath 2018.
e Xfroma‘upscaled’ Aladin to avoid chronology distorsion between RCM and GCM.

e ALADIN 12 km simulation, forced by CNRM - CM5 over the period 2006-2100 with scenario RCP4.5.
Training set : 70% of the data, Testing set: 30% of the data

Conclusions:
4 XGBOOST works well as a Statistical Downscaling method,

< Abletolearn anon-stationary relationship.



Application : Downscaling of real

X from the upscaled RCM :

o Use the model train in the
perfect model

n’ the chron
ication




Application : Downscaling of real

X from the upscaled RCM :

Use the model train in the
perfect model

Focus only on the
downscaling action of the

Only the way to train the models
changes
- Same variables in X
- SameY:
TASromyvp — TAScom,vpl

Application to new GCM :
We give the same data to both
models.

Training sample : RCP 4.5,
2006-2100

earn’ the chronolo
odification



Application : Downscaling of real G
—— HISTORICAL : 1951 - 2005
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Futur RCP85 (2071-2100)

Application : CNRM-CM5, RCP 8.5
—— Climate change response 2071-2100 vs 1970-

Annual DJF JJA

RCM 3.9°C 34°C 4.7°C

GCM 36°C 3.3°C 42°C

QQ-Plots of the response to climate change QQ-Plots of the response to climate change
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Conclusion & Perspective

e Building astatistical emulator of a RCM seems feasible
o  Good reproduction of the mean state
o  Some problems with the extremes , warm extremes specially

e Should be tested with other GCMs

e Need to think about multi-variable and 2 Dimensions

e Construction of different models :
o Neural Network : CNN, LSTM
o A more complex approach based on a better decomposition of the signal

e Applicationto CPMs.
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e Applicationto CPMs.
> If you are running simulations, it would be nice to save some altitude variables.



