SOFOG3D Science Meeting Effect of aerosols on fog life cycle 07/06/2022

Inès Vongpaseut Supervisors: Frédéric Burnet, Cyrielle Denjean M2 Internship (February - July 2022)

Aerosols indirect effect

Previous studies on the ground (Mazoyer 2016, Hammer 2014) in urban zone and (Wainwright 2021) in rural zone showed size and hygroscopicity dependance of activation of aerosol and the importance of supersaturations

- What are the **CCN activation** properties of aerosols as a function of their **vertical distribution** and their influence on the evolution of the microphysics?
- How does supersaturation vary with altitude in the cloud layer and how is it related to aerosols?

Internship goals

- Compare aerosol and droplets properties from different conditions, location to previous studies
- Vertical variability of activation parameters
- CCN closure study to determine fog supersaturation
- Documentation of activation at the top of fog

SOFOG3D measurement campaign

Experimental set-up at Jachère supersite

	Instrument	Parameter				
Aerosols	SMPS + OPC	Particle size distribution (10,6 to 496 nm and from 0,3 to $10\mu m$)				
	CCNC	CCN concentration at different supersaturations (SS)				
	WELAS 2300	Size distribution of hydrated aerosols and of droplets				
Fog	FM120	Particle size distribution (2 to 50 µm)				
	Visibilimeter	Visibility				

Tethered balloon at Charbonnières

	Instrument	Parameter
slo	OPC	Particle size distribution (0,3 to 10µm)
Aeroc	Mini-CCNC	CCN concentration at different SS
Fog	CDP Particle size distribution (2 to 50 μm)	
Meteo	Turbulence probe	Temperature, Pressure, RH, Wind

Data availability

Date	Ground (Jachère supersite)				Tethered balloon (Charbonnières)		
	SMPS	OPC	FM120	CCNC	OPC	CDP	Mini-CCNC
31/10/2019	V	V	v	X	X	X	X
05/12/2019	V	v	Р	x	V	V	X
06/12/2019	V	V	V	X	v	V	X
26/12/2019	P	v	v	x	x	x	X
28/12/2019	v	v	v	x	x	X	X
08/01/2020	X	v	v	x	V	v	X
23/01/2020	v	v	v	v	X	x	X
24/01/2020	V	V	v	V	v	v	X
28/01/2020	v	v	v	v	X	X	X
08/02/2020	v	X	v	X	V	v	V
13/02/2020	V	v	v	v	X	x	X
22/02/2020	V	v	v	v	V	V	v
23/02/2020	V	v	v	v	v	v	V
07/03/2020	V	v	v	v	X	X	X
11/03/2020	V	V	V	V	V	v	V

Fog event and data availability

At the ground 12 events sampled by aerosol + droplets including 8 sampled by the CCNC

Tethered balloon : 8 events sampled by the OPC and CDP including 4 sampled by the mini-CCNC

3 events sampled by all instruments : IOP 13 and IOP 15

Previous internship on impact of aerosol S. Tinorua

- Aerosols data validation on the ground
- Optical properties of aerosols : low absorption
- CCN closure study on the ground : D_{act,mean} = 232.92 nm at SS = 0.06%

*K*_{mean} = 0.39

VS PréviBoss $\kappa = 0,17 + 0,05$ VS Wainwright 0,26 (SS= 0,1%)

Different origin of air masses → different types of aerosols : marin (sulfate and sea salts) and one case
of dust particles on 24/01/2020

72h back-trajectories before fog event simulated with Hysplit model (NOAA)

Comparison of aerosols instruments : SMPS, OPC and OPC on tethered balloon

18h48-19h48 23/02/2020 : Aerosols particle size distribution

Comparison of ground aerosol measurements with tethered balloon measurements averaged over the first ten meters

 \rightarrow good agreement between SMPS + OPC (ground) and between ground and OPC (balloon)

Mode characterization

Aerosols size distribution were fitted using i lognormal distribution

 D_{gi} : geometric mean diameter σ_i : geometric standard deviation N_i : concentration of particles

Aerosol size distribution average over 1 hour before the fog event (2020/02/23)

Overview of aerosols properties on the ground

Aerosol vertical distribution is not homogeneous

1-

Low droplets concentration on the ground

Droplets concentration (N_d) during the 1rst hour of fog events

 \rightarrow Low droplets concentration Mean concentration = 25,75 cm⁻³

PréViBoss mean over the episode : 68 cm⁻³ (Mazoyer, 2016)

Correlated to mostly **bimodal** droplets size distributions

Contrasted droplets size distribution evolution

23/02/2020

Ongoing investigation of the link with aerosol properties with CCNC measurements

Vertical variability of activation into droplets

23/02/2020

Activation at the beginning of the fog

Activation at the top of the fog layer

Future work

- Statistical study of aerosol and droplet properties over all fog events
- Determination of activation parameters and their vertical variability using CCNC data
- Determination of SS values as a function of altitude and documentation of activation at the top of the fog layer

Kappa-Kohler theory :

- $\kappa = \frac{4A^{3}}{27D_{act}^{3}\ln^{2}(SS_{c})}$ $A = \frac{4\sigma_{w}M_{w}}{RT\rho_{w}}$
- D_{act} : Minimal diameter of activation - SS_c : Activation supersaturation - σ_w : surface tension of water - M_w : water molar mass - ρ_w : water density

S. Tinorua