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1 The equations of Ocean Circulation

The equations of ocean circulation are the core of ocean modelling. They are "the truth" of ocean
models and despite their limited number of variables, they contain a large wealth of physical
processes.

1.1 The fundamental laws of conservation in the ocean

The oceanic circulation can be comprehensively described by formulating the conservation of
mass, momentum, heat and salt and an equation of state relating thermodynamic variables.

1.1.1 Conservation of mass: continuity

The mass continuity equation states that in the absence of any mass source, the fluid mass is
conserved. Let us consider a control volume of zonal, meridional and vertical sizes δx, δy and δ z
and of density ρ on a fixed Cartesian coordinate system (i, j,k) attached to the ground. Its mass
conservation writes as:

d(ρδxδyδ z)
dt

= 0

= δxδyδ z
dρ

dt
+ρ(δyδ z

dδx
dt

+δxδ z
dδy
dt

+δxδy
dδ z
dt

)

= δxδyδ z
dρ

dt
+ρ(δyδ zδu+δxδ zδv+δxδyδw)

with d
dt the Lagrangian (or total) derivative operator, u = (u,v,w) the velocity vector. Hence

dividing by δxδyδ z yields the volumic mass conservation equation:

dρ

dt
+ρ(

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

) = 0

⇐⇒ dρ

dt
+ρ∇.v = 0

with ∇= ( ∂

∂x ,
∂

∂y ,
∂

∂ z) the space derivative operator.

In the ocean we make the Boussinesq approximation which states that relative density varia-
tions are small. With ρ(x,y,z, t)= ρ0+ρ ′(x,y,z, t) and ρ ′<< ρ0, the continuity equation becomes:

dρ ′

dt
+(ρ0 +ρ

′)∇.v' ρ0∇.v = 0

⇐⇒ ∇.v = 0

Hence to a very good approximation, oceanic currents are non-divergent. Note that the same
results are obtained with the stronger and unnecessary hypothesis of incompressibility.

1.1.2 Conservation of momentum: Newton’s 2nd law in a rotating frame

Newton’s 2nd law states that the Lagrangian evolution of momentum is determined by the sum
of external (gravity) and body (pressure and friction) forces. We first write the relation between
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The equations of Ocean Circulation

Lagrangian and Eulerian time derivatives by writing the chain rule of differenciation:

δu =
∂u
∂ t

δ t +
∂u
∂x

δx+
∂u
∂y

δy+
∂u
∂ z

δ z

⇐⇒ du
dt

=
∂u
∂ t

dt
dt

+
∂u
∂x

dx
dt

+
∂u
∂y

dy
dt

+
∂u
∂ z

dz
dt

=
∂u
∂ t

+
∂u
∂x

u+
∂u
∂y

v+
∂u
∂ z

w

=
∂u
∂ t

+(u.∇)u

with ∂u
∂ t the Eulerian (or local) derivative being a far easier quantity to observe and model.

Going back to the control volume (see Fig.1.1), the zonal pressure force exerted on the west-
ern and eastern faces is:

FPx = (P(x−δx)−P(x))δyδ z

hence the volumic zonal pressure force is:

FPx

δxδyδ z
=−∂P

∂x

and generalizing to other spatial dimensions:

FP

δxδyδ z
=−∇P

As for friction Fτ , Newton’s law of viscosity gives for a Boussinesq (or incompressible)
Newtonian fluid:

τi j =+νρ(
∂u j

∂xi
+

∂ui

∂x j
)

with τi j the viscous stress exerted over the coordinate i on velocity component j, xi,x j = (x,y,z),
ui,u j = (u,v,w) and ν = 8.9×10−7m2/s the water kinematic viscosity. The second term vanishes
in a Boussinesq (or incompressible) fluid, hence it is neglected in the following. On the control
volume, the zonal friction force is:

Fτx = (−τxx(x−δx)+ τxx(x))δyδ z+(−τyx(y−δy)+ τyx(y))δxδ z+(−τzx(z−δ z)+ τzx(z))δxδy

= −νρ

[
∂

∂x
(x−δx)δyδ z+

∂

∂y
(y−δy)δxδ z+

∂

∂ z
(z−δ z)δxδy− ∂

∂x
(x)δyδ z+

∂

∂y
(y)δxδ z+

∂

∂ z
(z)δxδy

]
u

= +νρ(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 )uδxδyδ z

= +νρ∆uδxδyδ z

with ∆ =∇2 the Laplacian operator. Hence on the volume control over the three dimensions, the
volumic friction force is:

Fτ

δxδyδ z
=+νρ∆u

Finally, Newton’s second law writes on the volume control as:

ρδxδyδ z(
∂u
∂ t

+(u.∇)u) = δxδyδ z(−∇P+νρ∆u−ρgk)

⇐⇒ ∂u
∂ t

+(u.∇)u = − 1
ρ
∇P+ν∆u−gk
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The equations of Ocean Circulation

with g = 9.81m/s2 the gravity acceleration and k the vertical unit vector. This last equation is the
conservation of specific (or massic) momentum, that is velocities. However it is usually unproperly
named the momentum conservation equation.

The vertical momentum equation can be simplified by noting that the ocean is to a very good
approximation under hydrostatic balance, dominated by the vertical pressure and gravity forces:

∂P
∂ z

=−ρg

The Boussinesq approximation also simplifies the momentum equations. It involves hy-
drostatic pressure, and the so-called second Boussinesq hypothesis states that P = P0 +P′ with
P′ << P0 as a consequence of ρ ′ << ρ0. We write the volumic momentum equations with respect
to a reference state at rest with ∂P0

∂ z =−ρ0g:

(ρ0 +ρ
′)(

∂u′h
∂ t

+(u′.∇)u′h) = −∇P′+ν(ρ0 +ρ
′)∆u′h−ρ

′gk

=⇒ ρ0(
∂u′h
∂ t

+(u′.∇)u′h) = −∇P′+νρ0∆u′h−ρ
′gk

=⇒ ∂u′h
∂ t

+(u′.∇)u′h = − 1
ρ0

∇P′+ν∆u′h−
ρ ′

ρ0
gk

by assuming second-order terms on perturbations small. We can define b = − ρ ′

ρ0
g the buoyancy

acceleration. It represents the effect of gravity on the stratified water column and thanks to the
Boussinesq approximation, it is the only means by which the thermodynamics (active tracers tem-
perature and salinity) impacts the dynamics (velocities) of ocean circulation. Hence the total
momentum equation (reference plus perturbation) writes as:

=⇒ ∂uh

∂ t
+(u.∇)uh =− 1

ρ0
∇P+ν∆uh−

ρ ′

ρ0
gk

with uh = (u,v,0) the horizontal velocity vector.

For geophysical fluids, several contributions arise from the Earth’s rotation and its spherical
shape. Fist on the plane Cartesian coordinates, two pseudo-forces arise from the Earth’s rotation:
the Coriolis and centrifugal accelerations. Second on the spherical coordinates, additional correc-
tion terms accounting for the Earth’s curvature arise in the momentum equations: the metric (or
curvature) terms. Although global numerical models are naturally written in spherical coordinates,
most oceanic problems can be analyzed in the much simpler local Cartesian coordinates, the met-
ric terms having a weak contribution to the momentum equations. We will henceforth limit the
analysis to the Cartesian plane.

The Coriolis and centrifugal accelerations arise from the Earth’s rotation inducing an acceler-
ation in the local Cartesian coordinate system with respect to reference, non-rotating, coordinates.
We consider the location of a water parcel r in an absolute non-rotating frame centered at the
Earth’s core. Its material evolution in the absolute frame is related to that in the relative local
coordinates by the following relation:

(
dr
dt

)A = (
dr
dt

)R +Ω× r ⇐⇒ uA = uR +Ω× r

with Ω = 7.29× 10−5rad/s the Earth’s angular velocity. A second derivation yields the corre-
spondence of accelerations:

(
duR

dt
)A = (

duR

dt
)R +Ω×uR
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The equations of Ocean Circulation

and with:

(
duR

dt
)A = (

duA

dt
)A−

d
dt
(Ω× r)A

= (
duA

dt
)A−Ω× (

dr
dt

)A

= (
duA

dt
)A−Ω× (uR +Ω× r)

we have:
(
duR

dt
)R = (

duA

dt
)A−2Ω×uR−Ω×Ω× r

The first apparent force on the local rotating frame is the Coriolis acceleration, the second
one being the centrifugal acceleration. The Coriolis acceleration can be written in terms of the
Coriolis parameter f = 2Ωsin(φ) (with φ the latitude) as : 2Ω×uR = (− f uR,+ f vR,0). We have
neglected the horizontal Coriolis acceleration (with w << u,v and the hydrostatic assumption).
The centrifugal acceleration is mostly vertical and compensated for by the Earth’s deformation at
low latitudes. We hence include it in an effective gravity force defined as:

g∗ = g+Ω×Ω× r'−g∗k

with g∗ = 9.81m/s2.

We finally obtain the following momentum equations under the hypotheses of Boussinesq,
hydrostatism, tangent plane and the neglect of small terms related to the Earth’s rotation:

∂uh

∂ t
+(u.∇)uh + f k×uh =− 1

ρ0
∇P+ν∆uh−g∗k

1.1.3 Conservation of heat

Similarly to the conservation of mass over the control volume (see Fig.1.2), we deduce from the
first law of thermodynamics the conservation of heat (or more precisely of potential temperature)
as:

∂θ

∂ t
+(u.∇)θ = νT ∆θ +

1
ρ0cw

Θ̇

with νT = 1.37×10−7m2/s the thermal diffusivity of water, cw = 3993J/K/kg the water heat ca-
pacity, Θ̇ (in W/m3) sources and sinks of heat and θ the seawater potential temperature. Potential
temperature is defined as the temperature corrected from pressure effects, that is the temperature
that the water parcel would have if uplifted adiabatically to surface. Due to the limited compress-
ibility of sea water, the effect of pressure only induces a limited correction to θ . Θ̇ represents
air-sea heat exchanges (and ice formation/fusion in the presence of sea ice).

1.1.4 The equation of state for seawater

Unlike the atmosphere, we do not dispose of an analytical equation relating density ρ to the other
thermodynamic variables of ocean circulation. This simplifies the mathematical analysis of ocean
thermodynamics, precisely because we have a more limited knowledge about it. Ocean models
use an empirical 78-member polynomial function of salinity, potential temperature and pressure to
deduce seawater density. Density cannot be assumed linear in θ , S and P (see Fig.1.3): in particu-
lar the thermal expansion of seawater varies typically between−αθ ρ = ∂ρ

∂θ
∼−0.05kg/m3/◦C for

θ = 0◦C and −αθ ρ ∼ −0.35kg/m3/◦C for θ = 30◦C with αθ the thermal expansion coefficient
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The equations of Ocean Circulation

δx

k

i

j

P(x)/ρ
0
 δyδzP(x-δx)/ρ

0
 δyδz

u(x-δx) δyδz u(x-δx)
- u(x) δyδz u(x)

w(z-δz) δxδy u(z-δz)

- w(z) δxδy u(z)

v(y-δy) δxδz u(y-δy)

- v(y) δxδz u(y)

-f v δxδyδz

−ν
∂u
∂ x

(x−δ x )δ y δ z
ν

∂u
∂ x

(x)δ y δ z

−ν
∂u
∂ z

( z−δ z)δ x δ y

ν
∂u
∂ z

(z )δ x δ y

−ν
∂u
∂ y

( y−δ y)δ x δ z

ν
∂u
∂ y

( y )δ x δ z

Conservation of zonal momentum over a control volume

δz

δy

Figure 1.1: Conservation of zonal specific (massic) momentum over a control volume: advection
(black), viscous forces (red), pressure forces (blue) and Coriolis acceleration (purple).

of seawater, for S = 35 ‰ and P = Pa. A reasonable formula is given by the inclusion of two
second-order terms accounting for the main nonlinearities of density: cabbeling and thermobaric-
ity. Cabbeling is the systematic densification of seawater by mixing, and thermobaricity is the
small dependency of αθ on pressure. The equation writes for the specific volume v = 1

ρ
:

v = v0

[
1+αθ (1+ γ

∗P)(θ −θ0)+α
∗
θ (θ −θ0)

2−βS(S−S0)−βP(P−P0)

]
with (v0,θ0,S0,P0) a reference state, β = 1

ρ

∂ρ

∂S the haline contraction coefficient, βP = 1
ρ

∂ρ

∂P the

compressibility coefficient, α∗
θ
=− 1

ρ

∂ 2ρ

∂θ 2 the second thermal expansion (or cabbeling) coefficient

and γ∗ = ∂αθ

∂P the thermobaric parameter.

The nonlinearity of seawater with respect to θ and S has important consequences. First
although density is conserved as θ and S are, its conservation equation is complicated by the
involvement of nonlinear terms, so that it is usually not explicitely formulated. Second, the ocean is
usually more expanded from surface warming in the Tropics than contracted from surface cooling
in the high latitudes, although the net heat flux is balanced. This average surface expansion of
the global ocean, which would be equivalent to a heat imbalance of Q0 ∼ +5W/m2, must be
equilibrated otherwise the ocean would be ever expanding. It is indeed balanced by cabbeling
which contracts the global ocean by mixing.
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The equations of Ocean Circulation

δx

k

i

j

u(x-δx) δyδz θ(x-δx)
- u(x) δyδz θ(x)

w(z-δz) δxδy θ(z-δz)

- w(z) δxδy θ(z)

v(y-δy) δxδz θ(y-δy)

- v(y) δxδz θ(y)

−νT
∂θ
∂ x

(x−δ x)δ yδ z
νT

∂θ
∂ x

(x )δ yδ z

−νT
∂θ
∂ z

( z−δ z)δ x δ y

νT
∂θ
∂ z

(z )δ xδ y

−νT
∂θ
∂ y

( y−δ y)δ xδ z

νT
∂θ
∂ y

( y)δ xδ z

Conservation of heat over a control volume

δz

δy

1
ρ0 cw

θ̇δ x δ yδ z

Figure 1.2: Conservation of heat over a control volume: advection (black), diffusion (red), and
source/sink (purple).

For most oceanic applications, thermobaricity can be ignored, so that a potential density
referenced at surface is the most commonly used density variable:

σ0 = ρ(S,θ ,P = Pa)−1000

1.1.5 Conservation of salt

The equation of state of seawater involves salinity, so that an equation for salinity must be formu-
lated to close the system of equations of oceanic motion. Very similarly the the conservation of
heat, the conservation of salt writes as:

∂S
∂ t

+(u.∇)S = νS∆S+ Ṡ

with νS ∼ νT/100 the salt diffusivity of sea water, Ṡ (in ‰/s) sources and sinks of salt and S in
‰ or g/kg the concentration of dissolved salts. Ṡ represents air-sea water exchanges, river runoff
and ice formation/fusion in the presence of sea ice. Indeed, the salinity of sea ice is typically
S ∼ 5‰ so that its formation is a source of salt (brine rejection) for sea water. We also note
that salt diffusivity is by far lower than heat diffusivity, which can cause convective instabilities
between water masses of different (θ ,S) properties named salt fingering and convective layering.
Those instabilities have a relatively minor role for mixing and ocean circulation.
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The equations of Ocean Circulation

Figure 1.3: (θ ,S) diagram of a hydrographic profile at 9◦S in the Atlantic basin, from 150m to
5000m depth (depth in hm, main water masses in red, source: Benjamin Ménétrier’s
lecture). The curvature of isopycnal lines (iso-σ0, black) illustrates the main nonlin-
earity of the seawater equation of state: cabbeling. Any mixing increases the density
of the resulting water mass.

1.2 The simplified equations for the oceanic circulation

The geophysical and oceanic simplifications of the equations of motion yield a much simplified
closed system of equations named the Boussinesq equations.

1.2.1 The Boussinesq equations

We first note that the default equations of motion constituting a closed system of equations for
Newtonian fluids are named the Navier-Stokes Equations. For geophysical fluids, they are sim-
plified (hydrostatic, shallow fluid and traditional approximation) to yield the Primitive Equations.
In the ocean, the Boussinesq approximation simplifies them further, as we saw before, to yield
the Boussinesq Equations. They write in the Cartesian coordinate frame (hence neglecting the
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The equations of Ocean Circulation

curvature terms):

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z
− f v = − 1

ρ0

∂P
∂x

+ν(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 )u

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

v+w
∂v
∂ z

+ f u = − 1
ρ0

∂P
∂y

+ν(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 )v

∂P
∂ z

=−ρg∗ =⇒ P(z) =
∫

η

z
−ρg∗dz′+Pa ' ρ0g∗η +g∗

∫ 0

z
ρdz′

∂w
∂ z

=−∂u
∂x
− ∂v

∂y
=⇒ w(z) = −

∫ z

−H
(
∂u
∂x

+
∂v
∂y

)dz′

∂θ

∂ t
+u

∂θ

∂x
+ v

∂θ

∂y
+w

∂θ

∂ z
= νT (

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 )θ +
1

ρ0cw
Θ̇

∂S
∂ t

+u
∂S
∂x

+ v
∂S
∂y

+w
∂S
∂ z

= νS(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 )S+ Ṡ

ρ = ρ(θ ,S,P0(z))

with H > 0 and η the ocean bottom depth (opposite to the bathymetry) and surface (dynamic sea
level).

The vertical integration of the hydrostatic relation uses the surface dynamic boundary con-
dition P = Pa ' 0 at z = η as a constant of integration, Pa being usually neglected (except for
storm surge and meteotsunami applications). However, its upper bound, the dynamic sea level η ,
is undetermined. To close the system of equations (currently 7 equations for 8 unknowns), we
therefore need an equation for η . We obtain it from the vertical intrgration of continuity plus the
surface and bottom kinematic boundary conditions. Indeed, sea level variations correspond to the
water that accumulates or exits from the water column. The surface kinematic boundary condition
is:

d
dt
(η− z)η = P+R−E =⇒ ∂η

∂ t
=−uh.∇hη +w(η)+P+R−E

with P, R and E the precipitation, river runoff and evaporation rates in m/s. The bottom kinematic
boundary condition is:

d
dt
(z+H)−H = 0 =⇒ w(−H) =

d
dt
(−H) =−uh.∇hH

which expresses the no normal flow at bottom. Finally vertical integration of the continuity equa-
tion yields: ∫

η

−H

∂w
∂ z

dz = w(η)−w(−H) =
∂η

∂ t
+uh(η).∇hη−uh(−H).∇h(−H)

and ∫
η

−H
−∇h.uhdz =−∇h.

∫
η

−H
uhdz+uh(η).∇hη−uh(−H).∇h(−H)

using Leibnitz’s integration formula. It finally gives:

∂η

∂ t
=−∇h.

∫
η

−H
uhdz+P+R−E

Hence the dynamic sea level is set by surface water exchanges and by vertically-integrated hori-
zontal convergence. This is the 8th and last equation of the Boussinesq equation system.

The Boussinesq approximations have permitted to filter out sound waves whose very large
velocities cs ' 1500m/s would have been a major issue for the numerical resolution of oceanic
circulation. However, it still includes one type of fast waves that will require specific numerical
treatments: external gravity waves with cg =

√
gH ∼ 200m/s. We will come back to this in the

next section.
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The equations of Ocean Circulation

1.2.2 The Reynolds-Averaged Boussinesq equations

In ocean modelling, we do not generally resolve all the scales of motions, ranging from the
global scale to the millimetric scale of diffusion. The Reynolds number for large-scale motions
is Re = UL

ν
∼ 1011, meaning that the smallest scales to be resolved (millimetric diffusion) are one

hundred billion times smaller than the largest scales to be resolved (basin scales). In terms of
modelling, such a range of scales would require to resolve 104 moles of grid points, which will
remain impossible for a long time. Hence a formal separation must be performed on the equations
of motion to identify the influence of small-scale unresolved motion on the large-scale resolved
motion.

A Reynolds average is hence performed on the Boussinesq system of equations. We decom-
pose all variables into a mean and a perturbation, e.g. u = u+u′. Reynolds assumed the mean
to be an ensemble average, but for numerical modelling we do the ergodic hypothesis which as-
similates ensemble to spatio-temporal means, so that we consider u as the large-scale (resolved)
variable and u′ as the small-scale (unresolved and to be parametrized) variable. Note that this is a
strong hypothesis that fragilizes the current ocean modelling framework. Hence, under Reynolds’s
hypotheses on his mean operator (linearity, commutativity and indempotency), all non-linear terms
of the Boussinesq equations are modified, the linear ones remaining unchanged. For instance, in
the zonal momentum equation, the time derivative is linear so that:

∂u
∂ t

=
∂ (u+u′)

∂ t
=

∂u
∂ t

+
∂u′

∂ t
=

∂u
∂ t

+
∂u′

∂ t
=

∂u
∂ t

On the contrary, meridional advection is non-linear (second-order), so that:

v
∂u
∂y

=(v+ v′)
∂ (u+u′)

∂y
= v

∂u
∂y

+v
∂u′

∂y
+v′

∂u
∂y

+v′
∂u′

∂y
= v

∂u
∂y

+v
∂u′

∂y
+v′

∂u
∂y

+v′
∂u′

∂y
= v

∂u
∂y

+v′
∂u′

∂y

We get a similar result for zonal and vertical advection, so that with the use of continuity we have
(see Fig.1.4 for the illustration):

(u.∇)u = (u.∇)u+(u′.∇)u′ = (u.∇)u+∇.(u′u′)

The second term is a turbulent (or eddy) transport contribution in the equation for the Reynolds-
averaged zonal momentum u. This means that the covariance of zonal velocity with each compo-
nent of velocity at the turbulent (hence unresolved) scale induces a non-zero contribution to the
momentum equation. Similarly for meridional velocity and for tracers θ and S we get:

(u.∇)v = (u.∇)v+∇.(u′v′)
(u.∇)θ = (u.∇)θ +∇.(u′θ ′)
(u.∇)S = (u.∇)S+∇.(u′S′)

Hence a total of 12 additional transport terms appear in the conservation of horizontal mo-
mentum, heat and salt, which correspond to the divergence of the three-dimensional turbulent (or
eddy) transports of u, v, θ and S. Those are actually 12 new variables for the system of equations
which hence needs 12 new equations to be closed. In order to close the system, we must formu-
late an equation for each of those terms, which is called a closure hypothesis. The most common
closure of turbulence is the introduction of turbulent diffusivities (see Fig.1.4). We assume just
like molecular diffusion the flux-gradient relation so that each turbulent flux u′X ′ (with X either u,
v, θ or S) is proportional to the gradient of the Reynolds-averaged (resolved) quantity ∇X . More
specifically, we separate vertical and horizontal eddy fluxes, the former being damped by gravity,
and we pose:

uh′X ′ = −κhX∇hX

w′X ′ = −κzX
∂X
∂ z

11
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with κhX and κzX the horizontal and vertical eddy diffusivities for the variable X . Those diffu-
sivities are several orders of magnitude larger than the molecular diffusivities in the momentum,
temperature and salinity equations. Hence we obtain the Reynolds-averaged Boussinesq equa-
tions by simply replacing molecular by turbulent diffusivities and specifying that the equations are
solved for the Reynolds-averaged quantities:

∂uh

∂ t
+(u.∇)uh + f k×uh = − 1

ρ0
∇hP+∇h.(κhu∇h)uh +

∂

∂ z
(κzu

∂uh

∂ z
)

P(z) = ρ0gη +g
∫ 0

z
ρdz′

w(z) = −
∫ z

−H
∇h.uhdz′

∂η

∂ t
= −∇h.

∫
η

−H
uhdz+P+R−E

∂θ

∂ t
+(u.∇)θ = ∇h.(κhT∇h)θ +

∂

∂ z
(κzT

∂θ

∂ z
)+

1
ρcw

Θ̇

∂S
∂ t

+(u.∇)S = ∇h.(κhS∇h)S+
∂

∂ z
(κzS

∂S
∂ z

)+ Ṡ

ρ = ρ(θ ,S,P0(z))

with the turbulent diffusivities varying spatially, contrary to their molecular counterpart. Note
that we have technically neglected the turbulent (unresolved) tracer fluctuations (θ ′2, S′2, θ ′S′

and higher-order terms) in the equation of state that could also have an impact on the Reynolds-
averaged (resolved) density ρ .

The Reynolds average sign above all variables of the equation system reminds us that it is
far from describing the "truth" of the very turbulent ocean circulation. We make here the strong
assumption that turbulence, which is an advective process, can be modelled as a diffusive pro-
cess. In particular, we assume that turbulent fluxes are a function of the local large-scale variables
(locality), that they are proportional to their gradients (flux-gradient relation), that they only flux
the properties down this gradient (downgradient fluxes). We have also assumed that a determinis-
tic relation exists between turbulent fluxes and the averaged quantities, although turbulent motion
is chaotic and hence largely random by nature. However, all the wealth of unresolved turbulent
processes (e.g. convection, shear instabilities, wave breaking, etc.) will have to enter into those
turbulent diffusivities. This is why they are generally not constant and can have complex math-
ematical formulations. We will come back to this in the next section. In the following we will
remove the Reynolds average sign for simplicity.

1.3 Dimensional analysis and leading-order balances

In the formulation of the momentum conservation, we have made a series of assumptions which
derived from dimensional analysis. Let us come back to the full momentum equations to quantify
the validity of these assumptions and identify the leading-order balances.

12
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δx

k

i

j

−w ' ( z)θ ' ( z)δ x δ y≃+κzT
∂θ̄
∂ z

(z )δ xδ y

Advection of heat over a control volume

δz

δy

w ' ( z−δ z)θ ' ( z−δ z)δ x δ y≃−κzT
∂θ̄
∂ z

(z−δ z )δ xδ y

−w̄ (z )θ̄ (z)δ xδ y

w̄ ( z−δ z)θ̄(z−δ z )δ xδ y

−u ' (x)θ ' (x)δ y δ z≃+κhT
∂ θ̄
∂ x

(x )δ yδ zu ' (x−δ x)θ ' (x−δ x)δ y δ z≃−κhT
∂θ̄
∂ x

(x−δ x)δ y δ z

ū(x−δ x)θ̄(x−δ x)δ y δ z
−ū(x)θ̄(x)δ y δ z

−v̄ ( y )θ̄( y )δ xδ z

v̄ ( y−δ y )θ̄( y−δ y)δ xδ z

−v ' ( y)θ ' ( y)δ x δ z≃+κhT
∂ θ̄
∂ y

( y)δ x δ z

v ' ( y−δ y )θ ' ( y−δ y )δ xδ z≃−κhT
∂ θ̄
∂ y

( y−δ y )δ x δ z

Figure 1.4: Heat advection over the control volume: mean (resolved, black) and turbulent (unre-
solved, red), the latter being parametrized as a so-called "turbulent diffusion".

1.3.1 Dimensional analysis

The full equations of motion are in a Cartesian coordinates frame:

Du
Dt
− uv tan(φ)

a
+

uw
a

= − 1
ρ

∂ p
∂x

+2Ωvsin(φ)−2Ωwcos(φ)+ν∆u

Dv
Dt
− u2 tan(φ)

a
+

vw
a

= − 1
ρ

∂ p
∂y
−2Ωusin(φ)+ν∆v

Dw
Dt
− u2 + v2

a
= − 1

ρ

∂ p
∂ z

+2Ωucos(φ)−g∗+ν∆w

The additional terms on the left-hand side correspond to the Earth curvature (or metric) terms, and
the additional terms involving Ω in the right-hand side are the horizontal Coriolis acceleration.

We are interested in large-scale motions of typical scales L∼ 1000km, H ∼ 1000m and U ∼
0.1m/s. We deduce from the continuity equation the typical vertical velocity scale: W ∼ H

L U =
0.1mm/s. The characteristic timescale of those motions is hence: T ∼ L

U = 107s∼ 1 year. At mid-
latitude f0 = 2Ωsin(φ)' 2Ωcos(φ)' 10−4s−1. We also recall that the water kinematic viscosity
scales as ν ∼ 10−3m2/s. We deduce Table1.1 and Table1.2 which list the order of magnitude of
the acceleration caused by each term in the horizontal and vertical momentum equations.

The geostrophic and hydrostatic balances stand out to an excellent approximation as the
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leading-order balances in the equations of motion. The dimensional analysis allows to deter-
mine the typical horizontal and vertical variations of pressure: δPL ∼ f0UρL∼ 104Pa and δPH ∼
ρHg∗∼ 107Pa. Hence typical horizontal variations of the dynamic sea level are δηH ∼ δPH/(ρ0g∗)∼
1m.

The next order terms in the horizontal momentum equations are, in decreasing order of im-
portance:

• The momentum trend and advection; however we note that turbulent advection can be strong
enough to become a leading-order term in the surface layer (Ekman or convective layer)
when κzuU/H2→ 10−5;

• The non-Boussinesq contribution to the horizontal pressure gradient;

• The horizontal Coriolis acceleration;

• The main metric terms;

• The vertical molecular viscosity;

• The secondary metric terms;

• The horizontal molecular viscosity.

A striking result is the smallness of molecular viscosity. Indeed, the ocean is put into motion
at the large scale, but an energetic analysis shows that this energy ultimately dissipates through
molecular viscosity. Hence the turbulence of ocean circulation must find a route from the global
energy input and the molecular energy sink.

Zonal Du
Dt −uv tan(φ)

a + uw
a = − 1

ρ0

∂ p
∂x + ρ ′

ρ2
0

∂ p
∂x +2Ωvsin(φ) −2Ωwcos(φ) +ν∆u

Meridional Dv
Dt −u2 tan(φ)

a + vw
a = − 1

ρ0

∂ p
∂y + ρ ′

ρ2
0

∂ p
∂y −2Ωusin(φ) +ν∆v

OoM U2/L U2/a UW/a δPL/(ρ0L) (δPLρ ′)/(ρ2
0 L) f0U f0W νU/H2

Value 10−8 10−9 10−12 ? = 10−5 ?/1000 = 10−8 10−5 10−8 10−10

Table 1.1: Orders of magnitude (OoM) for large-scale horizontal motion.

Vertical Dw
Dt −u2+v2

a = − 1
ρ0

∂ p
∂ z + ρ ′

ρ2
0

∂ p
∂ z +2Ωucos(φ) −g∗ ρ0

ρ
−g∗ ρ ′

ρ
+ν∆w

OoM UW/L U2/a δPH/(ρ0H) δPHρ ′/(ρ2
0 H) f0U g∗ g∗ρ ′/rho0 νW/H2

Value 10−11 10−9 ? = 10 ?/1000 = 10−2 10−5 10 10−2 10−13

Table 1.2: Orders of magnitude (OoM) for large-scale vertical motion.

1.3.2 Zero-order: geostrophy, Ekman and hydrostatism

The geostrophic balance has already been introduced in Chapter 1. It writes as:

f k×ug =−
1
ρ0

∇hP

with ug horizontal geostrophic velocities. We can remark from the scaling analysis that this rela-
tion is even more true in the ocean than in the atmosphere, with the Rossby number Ro= U

f L ∼ 10−3

at the large-scale. This means that as noted above, the inertial terms (time derivative and advection)
are one thousand times smaller than the pressure force and Coriolis acceleration at the large-scale.
At the mesoscale, with L∼ 50km and U ∼ 0.5m/s we still have Ro∼ 0.1, so that mesoscale eddies
obey to quasi-geostrophic dynamics. Hence far from frictional boundary layers and the Equator,
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it is necessary to go down to the submesoscale L ∼ 1−10km for the flow to deviate significantly
from geostrophy.

As noted above, within the frictional surface layer (or Ekman layer), vertical turbulent advec-
tion of momentum related to surface forcing can become dominant in the horizontal momentum
equations, in which case we have:

f k×uh =− 1
ρ0

∇hP+
∂

∂ z
(κzu

∂uh

∂ z
)

or with the decomposition uh = ug +uE:

f k×uE =
∂

∂ z
(κzu

∂uE

∂ z
)

We will come back to this balance in the following chapter. Finally, it is useful to note that the
tendency term of the momentum equations ∂uh

∂ t , which permits to integrate forward in time the
ocean circulation, is several orders of magnitude weaker than the leading-order terms. This means
that although the horizontal momentum equations are prognostic (time-dependent), they mostly
describe diagnostic (time-independent) balances between physical terms that equilibrate.

The hydrostatic relation has been posed early in this chapter. Indeed, its domain of validity is
even larger than geostrophy with the next-order term one million times smaller than the pressure
and gravity forces. Vertical velocity is hence named a diagnostic variable deduced from a time-
independent equation (as are P and ρ), as opposed to the prognostic variables deduced from a
time-dependent equation (as are u, v, η , θ and S). Vertical acceleration becomes significant in the
perturbation analysis when W ∼U ∼ 0.1m/s and L∼ 1m, that is for fully developed 3-dimensional
turbulence. In that case, it becomes of the same order of magnitude as the hydrostatic balance for
the perturbations P′ and ρ ′, which are the only contributions of P and ρ that are coupled with hor-
izontal dynamics. This is in particular the case of convection which is filtered out of the equations
by the hydrostatic assumption. This process, as many others, will have to be parametrized in the
so-called eddy diffusivity coefficients κzu, κzT and κzS.

Exercise: transport across Drake Passage. Using the dynamical method with a level of no mo-
tion at 4000m depth and assuming a linear equation of state ρ = ρ0(−αθ θ +βSS), estimate from
the meridional hydrographic section (Fig.1.5) the mean surface velocity and the integral transport
across the Drake passage. We have αθ ' 10−4 ◦C−1, βS ' 10−3‰−1, f0 '−1×10−4s−1.

Solution: the dynamical method consists in retrieving geostrophic velocities from the vertical
integration of the thermal wind relation, which uses both geostrophy and hydrostatism, from a
reference level. The thermal wind relation writes as:

∂ug

∂ z
=

∂

∂ z
(− 1

f0ρ0

∂P
∂y

)

= − 1
f0ρ0

∂

∂y
(
∂P
∂ z

)

= − 1
f0ρ0

∂

∂y
(−ρg)

= +
g

f0ρ0

∂ρ

∂y

= +
g
f0
(−αθ

∂θ

∂y
+βS

∂S
∂y

)

Let us integrate this relation per layer of ∆z∼ 1000m height and over the width ∆y' 500km. We
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Hydrographic section across the Drake Passage

Figure 1.5: Hydrographic section across the Drake Passage (source: Helen Johnson’s lecture). The
dynamical method allows to estimate accurately transports with no direct velocity mea-
surements.

read:

∆θ0−1000m ' +5◦C,∆S0−1000m '−0.2

∆θ1000−2000m ' +1.5◦C,∆S1000−2000m '−0.2

∆θ2000−3000m ' +1.5◦C,∆S2000−3000m '−0.02

∆θ3000−4000m ' +1◦C,∆S3000−4000m '+0.03

Hence we have:

∆u3000−4000m = u3000m =
g∆z
f0∆y

(−αθ ∆θ3000−4000m +βS∆S3000−4000m)

' −500× (−1×10−4 +0.03×10−3)'+3.5cm/s

u2000m = u3000m +∆u2000−3000m

' 0.035−500× (−1.5×10−4−0.02×10−3)' 12cm/s

u1000m = u2000m +∆u1000−2000m

' 0.12−500× (−1.5×10−4−0.2×10−3)' 29.5cm/s

u0m = u1000m +∆u0−1000m

' 0.295−500× (−5×10−4−0.2×10−3)' 64.5cm/s

We can deduce the integral transport across Drake passage by integrating meridionally and verti-
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cally those velocities:

TDrake ' ∆y∆z(u4000m/2+u3000m +u2000m +u1000m +u0m/2)

' 5×108(0.035+0.12+0.295+0.645/2)' 386Sv

This is the right order of magnitude for transports across the Drake Passage, although due to the
numerical approximations it is overestimated by a factor ∼ 2− 3. Those surface velocities and
transports are among the most intense geostrophic currents found in the global ocean.
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2 Ocean modelling

Before the 1960’s, only very simplified equations of motion were manipulated by oceanographers
to understand the dynamics. Some of them had analytical solutions, which was extremely useful
before the existence of computers. Obviously, the Boussinesq equations, which are a simplification
of the Navier-Stokes equations, have no analytical solution so far, which is one of the seven "mil-
lennial problems". In the late 1960’s, the first ocean models were developed and run on computers
which resolved numerically the equations of motion.

Equations of motion within ocean models are essentially the same as the Reynolds-averaged
Boussinesq equations presented before, with the following specificities:

• The coordinate system is not Cartesian but curvilinear (spherical) with horizontal axes that
are not simply longitude and latitude.

• They are resolved over a finite number of grid cells and time steps, and hence must be
discretized in time and space.

• A wide variety of lateral and vertical physical parametrizations can be introduced which all
aim at modelling the unresolved turbulent motions.

• All boundary conditions (surface, lateral and bottom) must be specified for the equations to
be solved in a given domain.

In the following we will mostly focus on NEMO model, which is arguably the most used
large-scale ocean model in Europe. However, most of the considerations are general to ocean
modelling.

2.1 Discretization

2.1.1 Time discretization

The equations for u, v, η , θ and S are prognostic, which allows to step forward in time the ocean
circulation and to predict its future state. This means that the Boussinesq equations must be dis-
cretized in time. In NEMO model, it is done through the leapfrog scheme which writes as follows:

X(t +δ t) = X(t−δ t)+2δ tRHS(t)

with X any ocean prognostic variable, δ t the timestep and RHS(t) the right hand side of X evo-
lution equation. Timesteps range from typically ∼ 1h for ocean climate models to ∼ 10min for
regional ocean models and∼ 1min for coastal models. The Boussinesq equations are hence solved
separately for even and odd timesteps, which requires the addition of the so-called Asselin tempo-
ral filter to ensure a convergence between even and odd solutions. Note however that for diffusive
terms, the forward Euler scheme is more suitable:

X(t +δ t) = X(t−δ t)+2δ tRHS(t−δ t)

Time and space discretization schemes can be evaluated by estimating the order of their truncation
accuracy, that is the behaviour of their error as a function of timestep δ t or grid spacing δx. In our
case, the leapfrog scheme has 2nd-order accuracy (error of O(δ t3)), whereas for the forward Euler
scheme it is only 1st-order (error of O(δ t2)).

2.1.2 Space discretization

Ocean model grids are most of the time curvilinear, and rarely unstructured. Unstructured grids
permit a more flexible and variable spatial resolution, but with additional numerical costs and a
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new mathematical formalism. They are used mostly for coastal applications (e.g. tides, surges).
Curvilinear grids such as NEMO grid constitute 3D arrays of points with coordinates (i,j,k) ori-
ented along orthogonal directions, one vertical and two horizontal. Horizontal directions do not
strictly follow longitude and latitude (Fig.2.1), which permits to position the poles over continents
and to avoid the numerical cost of resolving a singular point at the North Pole. NEMO grid is
tripolar, with one pole over Eurasia, one over America and one in the Antarctic (Fig.2.1). The
i and j directions are not strictly zonal and meridional, so that all operators involving horizontal
derivatives in the Boussinesq equations (e.g. ∇, ∆) have to be reformulated. This is however not a
crucial issue. Note that each grid cell’s surface is specific and is not a simple function of longitude
and latitude. As mentioned in Chapter 1, the typical horizontal resolution ranges from δx∼ 100km
for global climate applications to ∼ 10km for ocean-only regional studies and ∼ 1km for coastal
applications.

Figure 2.1: NEMO model’s tripolar curvilinear grid in the 1/4◦ resolution configuration (one every
12 points displayed, source: Madec et al 2016).

Several paradigms exist regarding the definition of oceanic vertical coordinates (Fig.2.2).
They can either be truely vertical (so-called z-coordinates), the paradigm being that gravity is
the dominant force in the vertical, terrain-following (so-called sigma-coordinates), the paradigm
being that the bottom boundary must be continuously defined, or a function of density (so-called
isopycnal coordinates), the paradigm being that ocean mixing fundamentally differs along and
across isopycnals (isolines of density). Although all arguments are valid, the z-coordinates, mostly
used in NEMO, presents the advantage of not impacting the horizontal momentum equations, and
in particular not introducing any spurious pressure gradient when iso-level layers are not exactly
horizontal. Indeed, all layers in the z-coordinates are at the same depth, with the exception of
the bottom cell where a partial cell can be preferred to better reproduce bathymetry. NEMO’s
z-coordinate has an irregular resolution, higher (typically δ z ∼ 1− 5m) in the near-surface and
lower (typically δ z∼ 100−300m) at depth. Indeed, as we saw in Chapter 1, vertical gradients of
oceanic properties are stronger near surface, which requires a higher resolution to represent them.
This surface bias of oceanographers can also be interpreted by the larger interest in surface ocean
for biological and weather/climate applications and by the lack of knowledge about the abyssal
ocean.
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Figure 2.2: Schematic of the three main ocean vertical coordinates in their natural domains of
application: vertical z within the mixed layer, sigma σ at the bottom and isopycnal ρ

within the interior (source: Benjamin Ménétrier’s lecture).

In most ocean models such as NEMO, physical variables are arranged according to the so-
called Arakawa C-grid (Fig.2.3). In this grid, scalar variables (θ ,S,P,ρ) are located at the center
of each cell (in the so-called T-grid), whereas vector variables (u) are located at the center of
respectively the eastern, northern and upper faces (so-called U-grid, V-grid and W-grid). This
arrangement ensures important conservation properties for scalar variables.

u

w

w

v

u

v
f

f

f

f

T

Figure 2.3: Schematic of NEMO’s Arakawa-C grid (source: Madec et al 2016). The location of
scalar and vector variables differs by 1/2 gril cell, which ensures important conserva-
tion properties for tracers (temperature and salinity).

A large variety of numerical schemes exists for space discretization. They will not be de-
veloped here but it is worth mentioning that they are of crucial importance for the properties of
ocean circulation. Typically, climate applications will prefer schemes that conserve integral prop-
erties, whereas high-resolution frameworks will privilege schemes that conserve variances and
small-scale patterns.
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2.1.3 Relation between space and time resolution

A rule of thumb used as a criterion for numerical stability is the so-called "Courant-Friedrich-
Lewy" (CFL) criterion. It states that any information should not travel more than one grid cell in
one timestep:

Uδ t < δx

with U either the wave or advective velocity. Hence for a typical climate ocean model of timestep
δ t ∼ 1h and resolution δx∼ 100km,

U <
δx
δ t
∼ 20m/s

External gravity waves of phase speed cg ∼ 200m/s, which are allowed by the equation of sea
level η , would cause numerical instabilities for low resolution ocean models. Dividing the timestep
by an order of 100 would remove this instability, but it is too costly for long-term modelling and
as noted in Chapter 1, the resolution of external gravity waves is not crucial to ocean circulation.
Hence two solutions exist: either filtering the fastest waves or splitting the timestep into a long
timestep δ t1 ∼ 1h for the slow 3D (interior) dynamics and a quick timestep δ t2 ∼ 1min for the
fast 2D (depth-integrated) dynamics. The latter option requires an appropriate communication
between the slow and fast dynamics.

2.2 Physics

As noted in the former section, most of the physical specifics of oceanic circulation enter through
the diffusive closure of turbulence. Because of gravity, the magnitude and the physics behind
lateral and vertical exchanges highly differ, which is why horizontal and vertical turbulent diffu-
sivities are defined separately.

2.2.1 Lateral physics

Lateral exchanges are enhanced in the ocean because no work is required against the buoyancy
(or gravity) force. They are believed to be dominated by the stirring of oceanic properties by
quasi-geostrophic mesoscale eddies. Having said that, it is fair to say that little is known about the
actual level of horizontal mixing by mesoscale eddies and the value chosen by modellers responds
to numerical stability constraints. Indeed, horizontal mixing operators and coefficients must be
tuned to prevent any numerical instability to develop at the small scale, while at the same time
not smooting too much the fine-scale oceanic structures. The approach usually slightly differs
between tracer and momentum horizontal diffusion:

• Mesoscale eddies are known to stir tracers (θ ,S) along isopycnals, rather than along hori-
zontal surface. Hence they have no direct effect on the density of water masses, apart from
systematic densification induced by mixing (cabbeling). The horizontal Laplacian operator
is therefore slightly rotated to include vertical components and to follow at each grid cell
isopycnal surfaces. Note that κhT = κhS because there is no physical rationale for mesoscale
eddies to stir differently heat from salt. Typically, we have κhT ' 100m2/s for a global
model, but this value should decrease with increasing resolution as mesoscale eddies start
being explicitely resolved.

• Resolving small-scale dynamical structures is crucial because most of the ocean kinetic
energy is known to lie at the mesoscale. Hence a bilaplacian horizontal operator ∆2

h =
∂ 4

∂x4 +
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∂ 4

∂y4 is preferred: it is more scale-selective, so that it permits smaller dynamical structures for
a given resolution. Note that correspondingly, κhu is expressed in m4/s.

Regarding tracers, a non-diffusive parametrization is added to account for the fact that mesoscale
eddies restratify the ocean, which is not accounted for by a diffusive operator. Indeed, they are
mostly formed by baroclinic instability which is known to extract gravitational potential energy
from the ocean (and atmosphere). A suitable parametrization of this effect is the addition of
so-called "eddy-induced velocities" uEIV, which are additional advection terms only applying to
tracers and proportional to the local baroclinicity (lateral density gradients).

Finally, lateral boundary conditions must be specified for both tracers and momentum. For
tracers, to a very good approximation (neglecting geothermal fluxes), no lateral exchanges occur
at the boundary with solid Earth. For momentum, there is no normal flow at lateral boundaries, but
the condition on tangent flow is more challenging to determine. Indeed, at the border with solid
Earth, there is no tangent flow either, but over a discretized grid this flow is defined over a cell
of typically ∼ 1− 100km width where significant flow can still occur. In practice, this boundary
condition is chosen within a continuum between no-slip (no tangent flow at the last grid cell) and
free-slip (no slowdown of the tangent flow at the last grid cell), either throughout the domain
or changing spatially. This numerical consideration with little physical rationale has tremendous
consequences for ocean circulation, especially for transports across straits.

2.2.2 Vertical physics

At the small scale, turbulence occurs over all three directions of space, but because of gravity,
the gradients of physical properties are mostly vertical. Hence we only include the impact of this
small-scale turbulence on vertical exchanges through vertical diffusivity coefficients. The core
of vertical physics in an ocean model is the parametrization of turbulence, a general theoretical
framework giving the values of diffusivities as a function of the large-scale (resolved) structure
of the flow. Although a variety of models are used for turbulence, the most common within the
NEMO community is the so-called Turbulent Kinetic Energy (TKE) scheme. The principle is to
resolve a simplified prognostic equation for the turbulent (unresolved) kinetic energy u′2 and to
assume that vertical turbulent diffusivities scale with it. More precisely:

κzu ∝ l

√
u′2

κzT = κzS =
κzu

Pl

with l a vertical mixing length scale and 1 < Pl < 10 the variable Prandtl number determining
by how much momentum vertical exchanges are larger than those for tracers. Once again, eddy
diffusivities are assumed equal for heat and salt. Without detailing the prognostic equation for u′2

(which is hence a new variable of the equation system), we can mention that vertical shear ∂uh
∂ z is

always a source of turbulence while vertical stratification ∂ρ

∂ z can either be a source (if unstable) or
a sink (if stable). Note also that external gravity wave breaking is included as a surface source of
turbulent kinetic energy, as are internal waves breaking in the mixed layer through an additional
source distributed within that layer.

In the case of static instability, convection should efficiently mix water masses until static
stability is restored. However, convection is not allowed explicitely by the hydrostatic nature
of the Boussinesq equations. Hence a specific and very simple convection scheme is added in
that case. It is named the Enhanced Vertical Diffusion (EVD) scheme, and indeed when static
instability occurs:

κzT = κzS = κzu ' 10m2/s
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so that within a few hours of simulation, stability is restored.

In the interior ocean, where the turbulence is weak and convection is absent because of
weak shear and/or high stratification, all diffusivities fall down to a background value, typically
κzT = κzS ' 10−5m2/s and κzu' 10−4m2/s. Those constant diffusivities also respond to numerical
stability constraints and they are far from being physical. They rather reflect the poor knowledge
of oceanographers about turbulent processes inducing mixing in the abyssal ocean. However, a
few more physical parametrizations exist for the abyssal ocean. One is the internal wave-induced
mixing parametrization which distributes over the whole water column the mixing resulting from
a climatology of internal wave dissipation energy. Its value typically does not exceed 0.01m2/s, so
that it is mostly active in the interior quiescent ocean and within the stratified thermocline. Also a
minor double diffusion mixing parametrization accounts for the instabilities caused by the differ-
ent molecular diffusivities of heat and salt in sea water. Those two parametrizations are the only
ones that account for differential mixing between salt and heat, so that κzT 6= κzS.

Finally, a bottom boundary condition is needed. For tracers, as in the lateral boundaries, a
no flux condition is imposed at the boundary with solid Earth. For momentum, a relatively minor
bottom friction can be added, which is a function of an internal wave (mostly tidal) dissipation
climatology.

2.3 Surface forcing

In the vertical, another boundary condition is needed, which concerns momentum, water/salt and
heat fluxes at the surface (Fig.2.4). Those fluxes include exchanges with the atmosphere, sea ice
and river runoff and they have been extensively described in the previous chapter. We will only
describe here their specificities in ocean models. First only the solar heat flux QSW and the river
runoff R (and ice shelves/iceberg melting in few configurations) are usually penetrative fluxes,
the former with an exponential decay and the second applying evenly over typically ∼ 30m. All
other heat, water fluxes and the turbulent momentum flux (wind stress) only apply to the first
model level. Usually, vertical diffusivities are large in the first levels that define the mixed layer,
so that those surface fluxes are in practise very rapidly redistributed over the mixed layer depth.
But below typically 50m depth, the ocean overwhelmingly does not feel directly surface fluxes.
In NEMO, surface momentum fluxes are considered as a surface boundary condition of vertical
turbulent fluxes:

−ρ0w′(0)uh′(0)' ρ0κzu
∂uh

∂ z

∣∣∣∣
0
→ τ0 = ρaCd |U(10m)|U(10m)

On the contrary, heat and water forcings are imposed as external sources Θ̇ and Ṡ for temperature
and salinity:

Θ̇(z) =
1

ρ0cwδ z
Qtot(z) =

1
ρ0cwδ z

(QSW (z)+QLW +QS +QL)

Ṡ(z) =
1

ρ0δ z
(E−P−R(z))

Regarding turbulent air-sea fluxes, several formulations exist depending on the desired ap-
plications (Fig.2.4). In coupled mode, there is a continuous feedback between the ocean and
atmosphere at the coupling frequency (typically a few hours), so that fluxes at the interface are
consistent between both components. In the forced oceanic mode, turbulent fluxes can either be
computed from surface atmospheric parameters (so-called "Bulk form") or taken as an external
forcing from the atmosphere (so-called "flux form"). A major issue with both strategies is that
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the ocean has more inertia than the atmosphere, so that the atmosphere should respond quickly
to any air-sea flux, which is only possible in coupled mode. We have just stated that the forced
oceanic configuration is an ill-defined problem compared to the forced atmospheric one. Hence
even in the forced mode, some atmospheric feedback must be accounted for. The advantage of
the "Bulk form" is that the feedback is implicit: once the sea surface temperature has changed,
surface fluxes will adjust because they are explicitely calculated. On the contrary, the "flux form"
does not include any explicit feedback, so that the imposed fluxes could potentially heat or cool
the ocean forever. This could lead to unphysical situations. This is why a sea surface temperature
(SST) restoration is usually added to surface fluxes in the "flux form" forcing, which mimics the
coupling and ensures reasonable temperatures. We use a Newtonian damping so that:

Qtot → Qtot +αr(SST −SSTre f )

with αr ∼−50W/m2/◦C the restoration factor and SSTre f a reference SST. However, the question
of which SSTre f to use arises, and no satisfactory solution exists. This is why the "Bulk form"
is usually preferred. It is fair to mention that the "Bulk form" also has major limitations: fluxes
are computed from temporal averaged atmospheric parameters (typically a few hours), which can
induce large errors because fluxes are nonlinear (the average flux is not the flux deduced from
averaged parameters); and the "Bulk" formulas used might differ from those of the atmospheric
forcing model, which causes an inconsistency between both models. To conclude, coupled mod-
elling is always preferrable for oceanic applications, which is a paradox because most of the ocean
modelling community works with ocean-only models. The reason for that is the obvious difficulty
to handle a coupled system for an oceanic (or atmospheric) modeller.

We can finally mention two types of ocean modelling frameworks: the so-called "hindcast
mode" and the so-called "historical mode". The "hindcast mode" uses an atmospheric hindcast as
the forcing, so that the historical chronology of past events is contained in the assimilated atmo-
spheric forcing. There is a chance that due to that, the ocean reproduces the chronology of past
events, although a large part of ocean variability is also chaotic and not related to atmospheric forc-
ing. On the contrary, the "historical mode" uses a free atmospheric model only forced by historical
anthropogenetic concentrations of greenhouse gases (and sometimes aerosols) as the forcing. In
that case the general global warming trend can be reproduced, but no historical chronology is ex-
pected to be reproduced because no observation has been assimilated in the atmospheric forcing.

2.4 Model error and ensemble numerical simulations

So far, we have encountered diverse sources of error inherent to ocean modelling:

• Errors related to the approximations of the Boussinesq equation system;

• Errors due to the closure of turbulence in the Reynolds-averaged framework;

• Time and space numerical discretization errors;

• Errors related to initial conditions and surface forcing.

The nonlinear nature of the oceanic circulation equations actually predicts that any small
error will tend to exponentially increase until reaching saturation. This is why the atmospheric
and oceanic weather is not deterministically predictable beyond a scale between one week and
one season. A means to document the error of ocean models is to perform ensemble simulations.
The principle is to sample the various sources of error (typically initial conditions, physics or
atmospheric forcing) by performing and ensemble of numerical simulations. This probabilistic
framework can be used to: document or reduce errors in weather, ocean and climate predictions;
study the chaotic part of ocean variability, which is not directly related to any forcing; interpret
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Air-sea fluxes in an ocean model
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Figure 2.4: Formulation of air-sea fluxes in an ocean model. Radiative fluxes and precipitations
are given by the forcing atmospheric model. Turbulent fluxes of heat, water and mo-
mentum can either be directly taken from the forcing atmosphere ("flux method") or
computed online within the oceanic model ("Bulk method") from the ocean and at-
mospheric surface parameters (temperature, humidity and wind). The former method
usually also includes an SST restoration towards a reference value SSTR (with αR < 0
the restoration coefficient), while the latter method requires to specify which Bulk for-
mulas to use for the computation of turbulent fluxes (to compute Cd , Cθ and Cq).

observations and evaluate more accurately ocean models. It can be considered as a new paradigm
for ocean modelling.

2.5 Example 1: 3D configuration of the Mediterranean Sea

Regional ocean models have several specificities with respect to global ones. First, because the
domain is reduced, a higher resolution can be afforded. This concerns the physics which can be
made eddy-resolving (resolving mesoscale eddies, that is∼ 1/10◦), the bathymetry which can bet-
ter resolve channels, straits and interactions with topography, and the atmospheric forcing whose
regional features can be made more accurate. In addition, regional domains usually have open
boundaries which will have to be specified.

During the tutorials, we will be analyzing the so-called NEMOMED12 model, a regional
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NEMO configuration on the Mediterranean Sea (Fig.2.5). It is a semi-enclosed mid-latitude basin
where high-resolution regional modelling is required by its key exchanges at narrow straits, key
high-resolution atmospheric jets and the need to resolve mesoscale dynamics. Its horizontal res-
olution is 1/12◦, that is ∼ 6− 8km, it is hence named an eddy-permiting model because it starts
resolving mesoscale eddies. Vertical resolution ranges from 1m at surface to ∼ 100m at the bot-
tom. The atmospheric flux forcing is a 12km resolution regional atmospheric reanalysis covering
the period 1979–2013, meaning that observations are assimilated. Hence it is expected that the
ocean represents the chronology of past events, and the simulation is qualified as a hindcast run.
At its only open boundary with the global ocean, in the near-Gibraltar Atlantic Ocean, θ , S and η

are restored towards an oceanic reanalysis and the domain is assumed to be closed. Initial condi-
tions are from an oceanic climatology. Finally, most of the physical options are identical to those
presented before.
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Figure 2.5: NEMOMED12 domain and bathymetry (source: Waldman et al 2017a).

2.6 Example 2: CNRM-CM6 global coupled model

2.6.1 General description

CNRM-CM6 model is a global coupled climate model participating in the next Climate Model
Intercomparison Programme (CMIP6) in the framework of the International Panel on Climate
Change (IPCC) sixth Assessment Report (AR6). It includes the main components of the climate
system: ocean, sea ice, atmosphere, continental surfaces and atmospheric aerosols (Fig.2.6). Hor-
izontal resolutions are typically 1◦ for all components, the vertical oceanic resolution being iden-
tical to NEMOMED12 regional Mediterranean model (1m at surface to 200m at deepest levels).
We focus here on the historical simulation covering the 1850–2014 period. Its only time-varying
external forcings are solar radiations, anthropogenetic greenhouse gases and aerosols (both natural
and anthropogenetic) and they follow historical records. An ensemble of 10 members have been
run to document the internal climate variability. They only differ in their initial states which come
from different years of the control pre-industrial run. This control run has been priorly performed
over several hundred years and it ensures a climate equilibration of CNRM-CM6 model under
constant pre-industrial external forcings.
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Figure 2.6: Schematic of CNRM-CM6 coupled model. Its atmospheric component ARPEGE in-
cludes an atmospheric aerosol module; its continental surface component SURFEX
includes the river drainage module CTRIP, the soil module ISBA and the lake module
FLAKE; its oceanic component NEMO includes the embedded sea ice model GELATO;
and all components are coupled via OASIS coupler.

2.6.2 Ocean - Sea Ice component

The ocean component included into CNRM-CM6 is the 1◦ resolution configuration of NEMO
model. Its physical parametrizations are essentially identical to those presented above and to
those of NEMOMED12. The only notable difference is the inclusion of the mesoscale eddy-
induced velocity parametrization for tracers (temperature and salinity). Indeed, at this resolution,
the ocean does not resolve mesoscale eddies at all. Therefore, eddy-induced velocities aim at
mimicking the restratification induced by them (see above). The ocean surface is fully coupled
with the atmosphere at a 6-hourly frequency using so-called "Bulk aerodynamic formulas", hence
no sea surface temperature restoration is required (see above for a discussion on this point).

In addition, and contrary to the regional model NEMOMED12, the coupled climate model
includes a sea ice component, GELATO model, fully embededed into the ocean model. It re-
solves both the sea ice and snow (above sea ice) dynamics and thermodynamics, including their
exchanges with both the atmosphere and ocean. Prognostic variables are the sea ice and snow
volume and enthalpy, the snow density and the sea ice surface, salinity and age. Hence over each
oceanic grid cell, a fraction between 0 and 1 of sea ice area covered with snow is present. Their
properties evolve in time as a function of the sea ice interaction with atmosphere and ocean, its
transport and vertical heat exchanges.

27



Ocean modelling

2.7 Example 3: 1D configuration at the PAPA buoy

Single column models are relevant configurations to test the behaviour of vertical physics parametriza-
tions without adding the complexity of their interaction with horizontal dynamics. It is generally a
compulsory step before implementing new vertical physics into a three-dimensional model. In the
equations of motion, all horizontal gradients are assumed null, so that lateral advection, turbulent
diffusion and vertical advection are removed. This leads to a much simplified set of equations:

∂u
∂ t
− f v =

∂

∂ z
(κzu

∂u
∂ z

)

∂v
∂ t

+ f u =
∂

∂ z
(κzu

∂v
∂ z

)

∂θ

∂ t
=

∂

∂ z
(κzT

∂θ

∂ z
)+

1
ρcw

Θ̇

∂S
∂ t

=
∂

∂ z
(κzS

∂S
∂ z

)+ Ṡ

ρ = ρ(θ ,S,P0(z))

Horizontal circulation is restricted to Ekman (wind-driven) dynamics, and it only impacts tracers
(θ and S) in the fact that the current shear ∂uh

∂ z modulates turbulent tracer diffusion κzT and κzS.

The most analysed case study is the PAPA buoy located in the subpolar North Pacific off the
coast of Canada (Fig.2.7a). In addition to the extensive measurement of oceanic and surface air-sea
parameters (Fig.2.7b), it is an area of limited horizontal exchanges where the neglect of horizontal
gradients is a reasonable hypothesis. Furthermore, the mixed layer depth presents a significant
seasonal cycle, which makes it physically relevant for tests on the vertical physics. In the tutorials,
we will analyze the vertical physics of NEMO model on a full seasonal cycle between June 2010
and June 2011.

a) Location b) Instrumentation

Figure 2.7: Location and instrumentation of the PAPA oceanographic observatory (source:
NOAA).
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2.8 Practical aspects of numerical modelling

2.8.1 Where do I read the physical description of my run?

In practise, an ocean model is a set of programs, written in a low-level language (e.g. Fortran
for NEMO). The core of the model is written in its Fortran routines, and unless specific model
development is required, no intervention is needed. Most of the options that users might want
to modify are written in a so-called namelist, which is a file specifying the values for the corre-
sponding parameters. Finally, in NEMO model, a set of fundamental options must be specified as
compliation keys, in a separate file. Those options are read during the model compilation so that
once it is compiled no further change can be made on them. In the tutorials we will briefly analyse
the model namelist file.

2.8.2 Grid and mask variables

Because of the curvilinear nature of NEMO grid, a series of elementary grid parameters must
be read in a mesh and mask file. In particular, longitudes, latitudes, depths, land-sea masks and
scaling factors (δx, δy, δ z) are variable at each grid point and differ between the T-grid and the
grids for velocities (U-grid, V-grid and W-grid). An important consequence of this is that all space
averages should be computed as ponderate means that account for each grid cell’s volume, e.g.:

< θ >=
Σθδxδyδ z
Σδxδyδ z

with < θ > an arbitrary 3D average. Another consequence, although of lesser importance, is that
at a given location (i, j,k), the T-grid can be over the sea while the U-grid (or V-grid) is over land,
or vice versa.

2.8.3 Online and offline diagnostics

In numerical modelling, unless no other option is available, online diagnostics are usually pre-
ferred to offline ones. Let’s illustrate this with the zonal temperature advection term u ∂θ

∂x . The
online diagnostic consists in storing its contribution to the temperature trend during the model
computation: hence it is extracted at the model time step, with the model mathematical formula-
tion and numerical scheme for tracer advection. The offline diagnostic consists in trying to retrieve
it after the run has already been performed, from the model outputs u and θ which are generally
stored every month or day. Hence a series of errors are committed: the computation is not done
at the model time step, and the mathematical formulation and numerical scheme used might not
be identical to those of the model. As a consequence, it is recommended to compute the required
physical diagnostics online. However, in practise, one does not always know in advance what
physical analysis will be required for a given run, so that some diagnostics have to be performed
offline.
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