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1 The Ekman currents and Sverdrup
balance

We have introduced in Chapter 1 both the Ekman currents and the Sverdrup balance, two funda-
mental theories which interpret the structure of near-surface currents and the existence of gyres in
the ocean. The former appeared in Chapter 2 as a leading-order balance near the surface. Both of
them illustrate the central role that the atmosphere plays in setting the ocean into motion.

1.1 Ekman currents

1.1.1 Hypotheses and derivation

We have seen in Chapter 1 that the Ekman theory was the first quantitative theory relating the
winds and ocean circulation. In Chapter 2, we have deduced the equation for the Ekman currents
by applying a dimensional analysis to the horizontal momentum equations. Indeed, we found
that near the surface, where vertical turbulent momentum echanges (modelled as diffusivities)
are intense, the momentum balance is driven by the Coriolis acceleration, the pressure forces
and vertical turbulent fluxes. The equilibration between Coriolis and pressure forces describes
the geostrophic currents, while that between Coriolis and vertical turbulent fluxes describes the
Ekman currents. Actually, Ekman originally formulated a stronger set of hypotheses to obtain
his wind-driven currents, very similar to those posed to formulate the single-column version of
NEMO model. He assumed that:

• The ocean is infinitely large and wide (as in the dimensional analysis and NEMO1D model),
so that interactions with topography can be neglected;

• It has reached a steady state (as in the dimensional analysis), so that the Eulerian derivative
∂uh
∂ t = 0;

• It is homogeneous horizontally (as in the dimensional analysis and NEMO1D model), so
that (uh.∇)uh = 0, ∇h.(κhu∇h)uh = 0 and by continuity w = 0 hence w ∂uh

∂ z = 0;

• Its density is constant, which has the same consequence as the Boussinesq hypotheses for
the horizontal momentum equations;

• The vertical eddy diffusivity κzu is constant.

Hence we obtain the very simplified momentum equations for the stationary Ekman currents:

f k×uE = κzu
∂ 2uE

∂ z2

that is:

uE =
κzu

f
∂ 2vE

∂ z2

vE = −κzu

f
∂ 2uE

∂ z2

1.1.2 Ekman transports

The simplest and most relevant resolution of the Ekman equations for large-scale oceanography
concerns the vertically-integrated Ekman transports within the Ekman layer. At the surface, by
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The Ekman currents and Sverdrup balance

continuity of the turbulent vertical fluxes, and as we saw for NEMO model in Chapter 2, we have:

τ = ρ0κzu
∂uh

∂ z

∣∣∣∣
0

with τ the surface wind stress. Now contrary to Ekman, we assume that at the bottom of the Ekman
layer hE , vertical turbulent fluxes cancel out: τb = κzu

∂uh
∂ z

∣∣
−hE

= 0. The vertical integration of the
Ekman equations hence yields a trivial solution for the Ekman transport:

UE =
∫ 0

−hE

uEdz =
[

κzu

f
∂vE

∂ z

]0

−hE

=+
τy

ρ0 f

VE =
∫ 0

−hE

vEdz =
[
− κzu

f
∂uE

∂ z

]0

−hE

=− τx

ρ0 f

This is one of the most useful relations in physical oceanography. It predicts that the wind-driven
Ekman transports are orthogonal to surface winds, to their right in the Northern Hemisphere and
to their left in the Southern Hemisphere. This explains the location of the main upwelling regions,
which are either due to offshore Ekman transports at the coast (e.g. the California upwelling
system) or to divergent Ekman transports (e.g. the Equatorial upwelling). It also predicts that for
a given wind, the Ekman transports will be stronger at low latitudes. This explains the particularly
strong meridional heat transport by the ocean at low latitudes, as we saw in Chapter 1. Obviously,
at the Equator the Coriolis acceleration cancels out and this relation does not hold anymore.

Exercise: upwelling rate of the California upwelling system. We assume an along-coast
Northerly wind of v10m = −10m/s and that the Ekman theory holds at L = 100km off the coast.
Deduce the Ekman volumic transport TE at that distance across a section of width W = 100km
and depth −hE , and the average upwelling rate at the basis of the Ekman layer w(−hE) within
this coastal box. We assume CD ∼ 2×10−3, ρa ∼ 1kg/m3, ρ0 ∼ 1000kg/m3, f0 ∼ 10−4s−1.

Solution: the Ekman volumic transport is TE =UEW =−CDρav2
10mW

ρ0 f0
=−0.2Sv, and hence by

continuity (with no normal flow at the coast) the average upwelling rate at the basis of the Ekman
layer is w(−hE) = − TE

WL = +2× 10−5m/s ' 2m/day. We deduce that any equatorward wind
along a North-South coast generates an offshore Ekman transport which drives Ekman upwelling.
Although the upwelling magnitude seems modest, due to the strong near-surface stratification, it
generates intense cold and fresh anomalies in those regions. It is the case of all Eastern Boundary
subtropical regions.

1.1.3 Ekman pumping

Another means by which Ekman transports can generate vertical motion is through the so-called
Ekman pumping (upwelling) or suction (downwelling). Indeed, if Ekman transports diverge, they
induce by continuity vertical motions at the basis of the Ekman layer. We integrate the continuity
equation within the Ekman layer:∫ 0

−hE

∂wE

∂ z
dz = −

∫ 0

−hE

(
∂uE

∂x
+

∂vE

∂y
)dz

=⇒ 0−wE(−hE) = −
∫ 0

−hE

[
∂

∂x
(
κzu

f
∂ 2vE

∂ z2 )− ∂

∂y
(
κzu

f
∂ 2uE

∂ z2 )

]
dz

=⇒ wE(−hE) =

[
∂

∂x
(
κzu

f
∂vE

∂ z
)− ∂

∂y
(
κzu

f
∂uE

∂ z
)

]0

−hE

=
1
ρ0

[
∂

∂x
(
τy

f
)− ∂

∂y
(
τx

f
)

]
=

Curl(τ/ f )
ρ0
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with Curl(a) =
[
∇× a

]
z the vertical vorticity operator. Indeed, because Ekman transports are

orthogonal to surface winds, any positive (negative) vorticity of those winds induces a divergence
(convergence) of Ekman transports, which by continuity causes upwelling (downwelling) at the
basis of the Ekman layer (Fig.1.1). Note that the beta effect can potentially also generate vertical
motions even for constant winds, but except at the planetary scale and near the Equator it has
a minor role. This explains the deep thermocline at subtropical latitudes between the tropical
Easterlies and the mid-latitude Westerlies (negative vorticity of winds hence downwelling) and the
shallow one at subpolar latitudes where Westerlies weaken (positive vorticity hence upwelling).

Figure 1.1: Ekman pumping/suction in the Northern Hemisphere.

Exercise: average upwelling rate in the subtropical North Atlantic. We assume that the East-
erly wind blows at u110m = −5m/s at φ1 = 10◦N and that the Westerly wind blows at u210m =
+10m/s at φ2 = 40◦N. Deduce the average downwelling rate wE(−hE) between those latitudes.
We assume CD ∼ 2× 10−3, ρa ∼ 1kg/m3, ρ0 ∼ 1000kg/m3, f1 ∼ 2× 10−5s−1, f2 ∼ 10−4s−1,
∆y = 3000km.

Solution: wE(−hE) =
1
ρ0

−∂τx/ f
∂y = Cdρa

ρ0∆y(
−u22

10m
f2
− u12

10m
f1

)'−2×10−6m/s'−1m/5 days. This
Ekman suction is one order of magnitude lower than the Ekman pumping estimated in coastal up-
welling systems. But at the climatological timescale, it is sufficient to induce the deep subtropical
thermocline.

Exercise: average Equatorial upwelling. We assume that the Easterly wind blows at u10m =
−5m/s all along the Equatorial band, and that the Ekman relation is valid at φ1 = 5◦N and
φ2 = 5◦S. Deduce the average poleward Ekman transport over a basin of width W = 6000km, and
the average upwelling rate in the Equatorial band between both latitudes. Here we assume that
f0 =±10−5s−1 at 5◦ of latitude.

Solution: the problem is symmetric at both latitudes with only f0 changing sign. We have:
TE(φ1) = UE(φ1)W = +

CDρau2
10mW

ρ0 f0
= +20Sv, hence TE(φ2) = −20Sv. We deduce by continuity:
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The Ekman currents and Sverdrup balance

w(−hE) =
TE (φ1)−TE (φ2)

WL ' 6×10−6m/s ' 1m/day. This upwelling rate is much larger than what
was found for the subtropical gyre. Indeed, as was mentioned earlier, Ekman transports are much
more intense in the Tropics because of the reduced value of f0. This Equatorial divergence of
Ekman transports largely explains the cold and fresh anomaly of the surface Equatorial ocean.

1.1.4 The Ekman spiral

Although of lesser importance for physical oceanography than the vertically-integrated Ekman
transports, the oceanic Ekman spiral allows to predict the rotation of Ekman currents with depth
and the relation between the wind stress and the Ekman layer depth. We go back to the Ekman
equations that we resolve for the complex variable v̄E = uE + ıvE , which yields:

v̄E = uE + ıvE

=
κzu

f

(
∂ 2vE

∂ z2 − ı
∂ 2uE

∂ z2

)
= −κzu

f
ı
∂ 2v̄E

∂ z2

that is:
∂ 2v̄E

∂ z2 =
ı f
κzu

v̄E

It can be simplified by using the polar form: ı = eiπ/2 = (eiπ/4)2 = (1+ı√
2
)2. Hence:

∂ 2v̄E

∂ z2 =
(1+ ı

hE

)2
v̄E

with hE =
√

2κzu/ f the Ekman depth. Hence the solution has the form:

v̄E = α exp((1+ ı)z/hE)+β exp(−(1+ ı)z/hE),

with α et β two complex integration constants. The boundary conditions are:

• bounded velocities at the ocean bottom: v̄E < ∞ when z→−∞, hence β = 0

• surface turbulent fluxes are equal to the wind stress, which we assume constant and zonal:
τ0 = τxi = ρ0κzu

∂uE
∂ z .

The surface boundary condition yields:

• ρ0κzu
ℜ(α)+ℑ(α)

hE
= 0 =⇒ ℑ(α) =−ℜ(α),

• ρ0κzu
ℜ(α)−ℑ(α)

hE
= τx =⇒ℜ(α) = τxhE

2ρ0κzu
,

hence

v̄E = (1− ı)
τxhE

2ρ0κzu
exp
(
(1+ ı)

z
hE

)
=

τxhE√
2ρ0κzu

exp
(

ı
( z

hE
− π

4

))
exp
( z

hE

)

that is

uE = V0 cos
( z

hE
− π

4

)
exp
( z

hE

)
vE = V0 sin

( z
hE
− π

4

)
exp
( z

hE

)
6
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with V0 = (τxhE)/(
√

2ρ0κzu) = τx/(ρ0
√

κzu f ).

Several conclusions arise from this derivation. First the Ekman depth corresponds in the
Ekman model to the characteristic depth of exponential decay of wind-driven currents. It reaches
typically hE '

√
2×0.1/10−4 ' 50m, which is very shallow compared to the ocean depth. It does

not scale directly with the wind stress, although turbulent diffusivities κzu are driven by it. Also,
the Coriolis dependency indicates that Ekman currents penetrate deeper at low latitudes. Surface
currents have an angle of −π

4 to a purely zonal wind at surface. Hence because of the Earth’s
rotation they are rotated 45◦ to the right of surface winds in the Northern Hemisphere, with a
magnitude of:

V0 =
ρaCD

ρ
√

κzu f
||u10m||2 ∼ 0.02||u10m||

that is typically 20cm/s for ||u10m|| = 10m/s. Thus they do not explain the most intense sur-
face currents that we observed in Chapter 1. They spiral to the right with depth in the Northern
Hemisphere and weaken exponentially (Fig.1.2).

Figure 1.2: Ekman spiral.

1.2 The Sverdrup balance

1.2.1 The barotropic vorticity equation

The most common approach to diagnose the oceanic gyre circulation is to derive an equation
for the barotropic, that is the vertically-integrated, vorticity. We will develop a series of theories
that are all based on this balance, the simplest being the Sverdrup theory. Indeed, as will soon be
shown, a leading-order term in the barotropic vorticity equation is the so-called "beta effect", which
corresponds to the meridional advection of planetary vorticity βV . Any meridional motion of
water masses induces relative vorticity due to the varying Coriolis acceleration with latitude d f

dy =

7
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β . This term involves the vertically-integrated meridional transport V =
∫ η

−h vdz, and noting that by
continuity ∂U

∂x + ∂V
∂y = 0 with U =

∫ η

−h udz, we can reconstruct from the beta term a streamfunction
of the vertically-integrated horizontal transport:

∂ΨBT

∂x
=V

∂ΨBT

∂y
=−U

with ΨBT the barotropic (or gyre) streamfunction. Hence the gyre circulation can be comprehen-
sively reconstructed from the zonal integration of the barotropic vorticity equation :

βV = RHS

=⇒ ∂ΨBT

∂x
= RHS/β

=⇒ΨBT (x,y) = +
1
β

∫ x

xr

RHS(x′,y)dx′

with RHS the right hand side of the barotropic vorticity equation and xr a reference longitude
where the streamfunction is assumed null. xr is usually chosen at the eastern boundary because in
the western boundary, the barotropic vorticity balance gets far more complex. In this case x < xr

and we have:
ΨBT (x,y) =−

1
β

∫ xr

x
RHS(x′,y)dx′

Let us first derive the full barotropic vorticity equation from the Boussinesq momentum equa-
tions, in order to identify all the terms that can potentially induce a gyre circulation. We recall the
momentum equations derived in Chapter 2:

∂u
∂ t

+(u.∇)u− f v = − 1
ρ0

∂P
∂x

+∇h.(κhu∇h)u+
∂

∂ z
(κzu

∂u
∂ z

) (1.1)

∂v
∂ t

+(u.∇)v+ f u = − 1
ρ0

∂P
∂y

+∇h.(κhu∇h)v+
∂

∂ z
(κzu

∂v
∂ z

) (1.2)

Integrating vertically both equations and cross-derivating ∂
∫
(1.2)dz
∂x − ∂

∫
(1.1)dz
∂y yields the barotropic

vorticity equation:

∂ζBT

∂ t
+Curl

[∫
η

−h
(u.∇)uhdz

]
+βV = − 1

ρ0
Curl

[∫
η

−h
∇hPdz

]
+Curl

[∫
η

−h
∇h.(κhu∇h)uhdz

]
+

Curl(τ )
ρ0

⇐⇒ ∂ζBT

∂ t
+Curl(A)+βV =

1
ρ0

J(Pb,h)+Curl(Dh)+
1
ρ0

Curl(τ )

with ζBT = ∂V
∂x −

∂U
∂y the barotropic vorticity, J(a,b) = ∂a

∂x
∂b
∂y −

∂a
∂y

∂b
∂x the Jacobian operator, Pb the

bottom pressure, A =

[∫ η

−h(u.∇)uhdz
]

and Dh =

[∫ η

−h∇h.(κhu∇h)uhdz
]

the compact notation

of advection and horizontal turbulent diffusion. We have used the continuity equation to simplify
the Coriolis term, used Leibniz’s integration theorem and neglected sea level variations to simplify
the pressure term. Hence once the gyre circulation has reached a steady state, ∂ζBT

∂ t = 0 and we can
diagnose its circulation as:

V =
1
β

[
−Curl(A)+

1
ρ0

J(Pb,h)+Curl(Dh)+
1
ρ0

Curl(τ )
]

=⇒ΨBT (x,y) = − 1
β

∫ xr

x

[
−Curl(A(x′,y))+

1
ρ0

J(Pb(x′,y),h(x′,y))+Curl(Dh(x′,y))+
1
ρ0

Curl(τ (x′,y))
]

dx′
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Most of the work has been done regarding the gyre circulation with this last equation, because it
describes all the physical contributions that can drive or modulate it. It also has the great advantage
of being solvable numerically, provided the forcings to its right hand side are known. It means that
the gyre circulation can be reconstructed from observed estimates of those forcings, and that in a
numerical model the physical drivers of any gyre can be analyzed. Note that ζBT = ∆hΨBT , so that
a cyclonic gyre will have a positive curvature of the barotropic streamfunction, that is a negative
streamfunction, and reversely for an anticyclonic gyre. Physically, the equation states that the gyre
circulation is set by the equilibration of the beta effect with:

• The vorticity of momentum advection −Curl(A);

• The interaction of bottom pressure with bathymetry 1
ρ0

J(Pb,h) (the so-called bottom pres-
sure torque);

• The vorticity of lateral dissipation Curl(Dh);

• The wind stress (and/or bottom stress) curl: 1
ρ0

Curl(τ ).

1.2.2 Sverdrup’s hypotheses and equation

The hypotheses of Sverdrup’s theory are very similar to those of Ekman, with three notable excep-
tions:

• No horizontal homogeneity is assumed, precisely because it aims at predicting the horizontal
structure of the gyre. However, advection and lateral turbulent diffusion of momentum are
assumed negligible (linear and inviscid hypotheses);

• The hypothesis of constant κzu is withdrawn, because it is unnecessary to predict vertically-
integrated transports.

• Because the momentum equations are integrated down to the bottom, two assumptions are
necessary to neglect the role of bathymetry: no bottom friction τb = 0 and flat bottom
∇hh = 0.

Hence the momentum equations are identical to the leading-order balance found in Chapter 2,
which only includes geostrophic and Ekman dynamics:

− f k×uh =− 1
ρ0

∇hP+
∂

∂ z
(κzu

∂uh

∂ z
)

From the full development of the vorticity equation done above, it is trivial to deduce the Sverdrup
balance:

βV =
1
ρ0

Curl(τ )

which yields after zonal integration the predicted barotropic streamfunction:

ΨBT (x,y) =−
1

ρ0β

∫ xr

x
Curl(τ (x′,y))dx′

The great success of Sverdrup theory stems in the fact that it was the first to correctly predict
the location of the main subtropical and subpolar gyres. Indeed, over a given basin, the sign of the
average wind stress curl at a given latitude gives the correct direction for the meridional flow in
the interior ocean. At subtropical Northern latitudes, the negative curl is consistent with agerage
southward flow in the interior (Fig.1.3), that is positive values of ΨBT . Reversely at subpolar
Northern latitudes, the positive curl is consistent with agerage northward flow in the interior, that
is negative values of ΨBT . It also gives reasonable quantitative predictions for the interior transport
of subtropical gyres.
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Figure 1.3: Zonal wind stress used in Sverdrup’s model (left) and streamlines when integrating
from the eastern boundary.

Exercise: estimation of the Sverdrup transport of North Atlantic and Pacific subtropical and
subpolar gyres. We assume that the Atlantic basin has a width W ' 6000km with purely zonal
winds of u10m(10◦N) =−5m/s, u10m(40◦N) = +10m/s and u10m(75◦N) = 0m/s varying linearly
between those latitudes. Deduce from the Sverdrup relation the integral meridional transport at
30◦N and 60◦N. Do the same in the Pacific, assuming the same wind profile and W ' 8000km. We
assume CD ∼ 2×10−3, ρa ∼ 1kg/m3, ρ0 ∼ 1000kg/m3, β (30◦N)' 2×10−11m−1s−1, β (60◦N)'
10−11m−1s−1.

The zonal integration of the Sverdrup relation yields: ψBT (30◦N)= −1
ρ0β (30◦N)

∫ xE
xW

Curl(τ )dx=
W

ρ0β (30◦N)
∂τx
∂y = CdρaW

ρ0β (30◦N)
u2

10m(30◦N)+u2
10m(60◦N)

L ∼ +20Sv and similarly we get ψBT (60◦N) ∼ −40Sv.
Once again, a gyre of negative vorticity will have positive values of its streamfunction, and vice
versa for a cyclonic gyre. Although we get the right sign and order of magnitude for the basin-
integrated gyre circulation, we largely underestimate it, which is a typical bias of Sverdrup theory.
In the Pacific, the higher basin width by 25% mechanically induces a stronger basin-integrated
Sverdrup transport by 25%.

However, due to its extreme simplifications, the Sverdrup theory poses a series of issues. It is
known to fail in representing the western side of gyres and subpolar gyres (Fig.1.4), which highly
limits its domain of validity. Also, it tends to largely underestimate (typically by a factor ∼ 3) the
magnitude of both subtropical and subpolar gyre transports (Fig.1.4c). Most importantly, it does
not predict any return flow for the gyres, which is however required by continuity. In particular,
it does not predict whether the return flow must occur in the eastern or western boundary: the
integration of the Sverdrup relation from either the eastern or western boundary gives identical
results in the interior. Hence other ingredients must be added to the vorticity balance to permit that
return flow.

1.2.3 Interpretation in terms of Ekman and geostrophic flow

The Sverdrup balance strictly results from Ekman and geostrophic dynamics, so that it can be
decomposed into two vorticity balances, one within the Ekman layer and the other within the

10



The Ekman currents and Sverdrup balance

a. Interior 
geostrophic flow 

from Sverdrup 
theory

b. Relative 
difference to 

observed flow

c. North Atlantic gyre transport

- Observed
- - Sverdrup theory

Figure 1.4: a) Interior geostrophic transport predicted from Sverdrup theory and b) relative error
(from −1 = −100% to +1 = +100%) with respect to ARGO measurements (source:
Gray and Riser 2014). c) Zonal integration of the gyre transport at specific North
Atlantic latitudes, either observed or from Sverdrup theory (source: Colin de Verdière
2016).

geostrophic interior. In the Ekman layer the vertically-integrated vorticity equation writes as:

βVE + f
∫

η

−hE

∇h.uhdz =
1
ρ0

Curl(τ )

=⇒ βVE − f (w(0)−w(−hE)) =
1
ρ0

Curl(τ )

=⇒ βVE + f w(−hE) =
1
ρ0

Curl(τ )
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The Ekman currents and Sverdrup balance

One additional term appears that was not apparent in the vertically-integrated vorticity equation:
the planetary vortex stretching f w(−hE). It results from planetary vorticity just like the beta effect,
and it is related to the conservation of planetary angular momentum: any positive stretching of a
water column induces positive vorticity, and vice versa for negative stretching. It cancels out when
integrating over the full water column, but it acts as a vorticity coupling between the Ekman layer
and the interior ocean. Indeed, in the latter we have the geostrophic vorticity balance:

βVg + f
∫ −hE

−h
∇h.uhdz = 0

=⇒ βVg− f (w(−hE)−w(−h)) = 0

=⇒ βVg = f w(−hE)

Hence the wind stress imparts vorticity into the Ekman layer, most of which is transmitted to
the geostrophic interior ocean by the stretching induced by the Ekman pumping. It can only be
equilibrated in the geostrophic interior by the beta effect, which ultimately equilibrates the surface
forcing (Fig.1.5). The sum of both balances yields the Sverdrup relation:

βVE +βVg = βV =
1
ρ0

Curl(τ )

which is equivalent to the wind stress decomposition:

− β

ρ0 f
τx +

f
ρ0

Curl(τ/ f ) =
1
ρ0

Curl(τ )

Hence, because the first term on the left hand side is relatively smaller, the Sverdrup transport is
mostly a response of the geostrophic interior to the wind stress curl. Most importantly, because
f/β ∼ 107m, vg/w(−hE)∼ f/(βH)∼ 2000, so that an Ekman pumping as low as 1m/2days will
induce meridional velocities of 1cm/s in the interior ocean. Hence Ekman pumping is important
not only for near-surface dynamics, but also for the circulation of the interior ocean.
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The Ekman currents and Sverdrup balance

Figure 1.5: Schematic link between wind stress, surface Ekman transport, interior geostrophic
transport and gyre circulation (source: Talley et al 2012). The wind stress curl induces
a convergence of Ekman transports (Ekman suction) near the surface, which activates
an interior southward transport that sets up the Sverdrup balance.
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2 The western intensification of gyres

Sverdrup theory explains the weak interior flow of oceanic gyres and the approximate latitude of
the subtropical to subpolar separation. However, it does not predict where and how the gyre return
flow occurs. Strikingly, this return flow is the only element of the gyre circulation that stands out
in an instantaneous map of surface velocities (see Fig.2.2 of Chapter 1). We will see that near the
borders, the Sverdrup balance falls apart and other contributions permit an intensified return flow.

2.1 Bottom friction: Stommel model

Although the physics behind Stommel’s model is questionable, it was the first one to predict the
western return flow of the gyre circulation. He added to Sverdrup balance a bottom friction force
modelled as a linear drag on barotropic vorticity: τb =−rζBT =−r∆hΨBT . Hence the barotropic
vorticity equation becomes:

βV =
1
ρ0

Curl(τ )− r∆hΨBT

This allowed him to close the oceanic basin at both the eastern and western borders, and to retrieve
an analytical solution for ΨBT . The resulting circulation illustrates the role played by the beta
effect in the western intensification of gyres:

• In the absence of any Earth rotation, an anticyclonic gyre is set into motion by the anticy-
clonic wind stress, which results in a symmetric circulation (Fig.2.1a). Sea surface height is
higher to the northeast and southwest because the water is pushed respectively by westerlies
and trade winds, so that zonal pressure gradients balance the zonal wind stress (as is the case
in the equatorial ocean).

• In the case of an f plane, the circulation is essentially the same because Coriolis acceleration
does not intervene in the barotropic vorticity balance (Fig.2.1b). The main difference is
that because of geostrophic equilibration, the sea level essentially follows the circulation
streamlines. This is an indication that most of the gyre circulation is at geostrophic balance,
as was commented before.

• Now in a beta plane, a zonal assymetry appears in the circulation and consistently in sea
level (Fig.2.1c). Indeed, to the east, the cyclonic beta effect partially compensates the anti-
cyclonic wind stress, so that less bottom friction is needed for the flow to reach a vorticity
balance. As friction is proportional to vorticity, this means that the flow must slow down.
Reversely, to the west, both the beta effect and the wind stress impart anticyclonic vorticity.
Hence the bottom friction must be enhanced to balance both terms. This is done through the
intensification of the northward flow. As the basin is closed, by continuity the northward and
southward transports must be equal, which implies a narrow western boundary northward
flow and a wide interior southward flow.

This model explains most of the gyre structure and assymetry. Essentially, the explanation
in terms of vorticity balance is valid: because of the beta effect, an enhanced cyclonic vorticity
source is needed at the western boundary, and a weakened one in the interior ocean. His addition
of a bottom friction that opposes the flow explains in particular why the return flow cannot occur
at the eastern boundary. However, bottom velocities would need to be unrealistically large for
this bottom friction to have a significant role in the vorticity balance. Also, the predicted western
boundary current is far too narrow compared to observations. Hence another candidate must be
found.
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The western intensification of gyres

Figure 2.1: Results from Stommel’s model : streamlines (left) sea surface height (right) in three
idealized cases : no Earth rotation ( f = 0, top), f plane ( f = f0, middle) and beta plane
( f = f0 +βy, bottom).

2.2 Lateral friction: Munk model

Munk essentially had the same approach as Stommel, except that instead of bottom friction, he
assumed that lateral dissipation plays the role of balancing the vorticity equation and permitting
an intense western return flow. In this case, the barotropic vorticity equation becomes:

βV = Curl
[∫

η

−h
∇h.(κhu∇h)uhdz

]
+

1
ρ0

Curl(τ )

He assumed the eddy diffusivity coefficient to be constant: κhu = A, so that the lateral diffusion
term writes as:

Curl
[∫

η

−h
∇h.(κhu∇h)uhdz

]
= ACurl(∆hUh)

= A∆hζBH

Hence the barotropic vorticity balance becomes:

βV = A∆hζBH +
1
ρ0

Curl(τ )

Horizontal velocities are assumed null at the border (no-slip boundary condition seen in Chapter
2), so that this lateral diffusivity plays exactly the same role as Stommel’s bottom friction: it slows
down the gyre circulation. A notable difference is that it acts preferentially along the borders,
whereas bottom friction is also active in the interior.
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The western intensification of gyres

Results are very similar to Stommel’s model, with only one major improvement: transports
cancel at the borders (Fig.2.2). He also applied a more realistic meridional wind profile. How-
ever, like Stommel’s model, his lateral dissipation requires unrealistic horizontal velocities at the
western boundary to balance the vorticity equation. Hence it also predicts a too narrow western
boundary current. We will see that less intuitive terms of the vorticity balance intervene in the
western intensification of gyres.

Figure 2.2: Meridional wind and wind stress curl in Munk’s model (left) and streamlines of the
gyre circulation (right) in an idealized North Atlantic basin.

2.3 Topographic torques

The role of topography appears explicitely in the barotropic vorticity equation as the so-called
bottom pressure torque term. As we will see in the barotropic case, its physical effect is to at-
tach the flow to topographic contours, or more precisely to geostrophic f/h contours. Actually,
its effect is evident from model simulations of the high-latitude circulation (Fig.2.3), which is
relatively barotropic due to the deep-reaching mixed layers. At those latitudes, the beta effect be-
comes weak so that currents tend to follow closely topography. This topographic control is evivent
in the Labrador Sea where the main boundary current strictly flows above the h = 1000m isobath
(Fig.2.3d). Diagnosis of the full barotropic vorticity balance in an ocean climate model reveals that
the bottom pressure torque (Fig.2.3b) is at least as important in determining the gyre circulation
(Fig.2.3a) as the wind stress curl (Fig.2.3c), especially for the subpolar gyre.

The simplest derivation of this topographic control on the flow is the formulation of the
geostrophic vorticity balance with varying bathymetry −h(x,y) for a barotropic ocean (ρ = ρ0).
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The western intensification of gyres

a. Ψ
BT

b . Bottom pressure torque

a. Ψ
BT

c . Wind stress curl

d . Near-surface velocities

Figure 2.3: a) Barotropic streamfunction in an ocean climate model (1◦ resolution) and contri-
butions of b) the bottom pressure torque and c) the wind stress curl (source: Yeager
2015). d) Near-surface currents superimposed to the 1000m and 3000m isobaths (black
contours) in the Labrador Sea from an high-resolution (1/12◦) ocean model (source:
Saenko et al 2014). At high latitudes, currents follow topographic contours, which is
consistent with the bottom pressure torque dominating the barotropic vorticity balance.

In this case the barotropic vorticity balance becomes:

βV =
1
ρ0

J(Pb,h)

=
1
ρ0

(
∂Pb

∂x
∂h
∂y
− ∂Pb

∂y
∂h
∂x

)

= f (vg(−h)
∂h
∂y

+ug(−h)∂y
∂h
∂x

)

= f ug(−h).∇h

This development of the bottom pressure torque is general and not specific to a geostrophic and
barotropic fluid. It states that whenever the bottom geostrophic velocities push the fluid up or
down the topography, it generates vorticity. Indeed, it can be shown mathematically that:

J(Pb,h) = 0 ⇐⇒ Pb = P(h)

which means that the bottom pressure torque is null if and only if bottom pressure is constant along
isobaths, that is if bottom geostrophic currents follow the isobaths. Hence the bottom pressure
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The western intensification of gyres

torque is very similar to a bottom vortex stretching that generates positive vorticity when the
column is stretched because it is advected down the topography. It can be shown by noting that in
the geostrophic case:

f ug(−h).∇h = f
dh
dt

=− f w(−h)

However physically, the bottom pressure torque is not a vortex stretching: it corresponds to the
torque of the force exerted by solid Earth on the ocean bottom. Now remembering that βV = h d f

dt
for a barotropic fluid, we deduce:

h
d f
dt
− f

dh
dt

= 0

=⇒ 1
h

d f
dt
− f

h2
dh
dt

= 0

⇐⇒ d f/h
dt

= 0

This expresses the Lagrangian conservation of potential vorticity, which in this simple case is f/h.
It has an important consequence for the gyre circulation: bathymetric changes along the flow are
sufficient to equilibrate the beta effect induced by any meridional transport. More specifically, a
northward flow can be equilibrated if it moves down the bathymetry, and vice versa for a southward
flow. This means that a geostrophic circulation can be closed if geostrophic contours f/h are
closed, which is the case for much of the North Atlantic subpolar gyre (Fig.2.4). As f contours are
purely zonal, a strong meridional deformation of f/h contours means that the topographic slope
largely dominates over the beta effect in the barotropic vorticity balance.

Figure 2.4: North Atlantic geostrophic f/h contours (source: Peter Rhines’s lecture). Their large
meridional deformation at high latitudes indicates that the flow tends to follow the
bathymetry.

If we add the wind stress forcing back to the barotropic vorticity balance we get the so-called
topographic Sverdrup balance:

βV = f ug(−h).∇h+
1
ρ0

Curl(τ )

18



The western intensification of gyres

This balance states that there is no need of any energy sink such as bottom friction or lateral dissi-
pation to explain the western boundary return flow of gyres. As explained above, it is enough for
the western boundary current to flow down the topography as it goes north. In light of recent re-
sults, western boundary currents are relatively conservative which means that the bottom pressure
torque is a better candidate than bottom friction and lateral dissipation to permit the meridional
mass flux in the western boundary. We can also note that in the interior ocean, the bottom pressure
torque can also be sufficient to generate a meridional flow, in the absence of any wind stress curl.

Finally, it is worth mentioning that the ocean is generally baroclinic, and in that case the
three-dimensional density structure matters, because it determines the bottom pressure torque and
hence the circulation. Indeed, the bottom pressure corresponds to the weight of the overlying
ocean column. Hence so-called "buoyancy-driven" gyres can exist (Fig.2.5), which are not driven
by the wind stress curl but by buoyancy fluxes (heat and water fluxes). This is for instance the case
of cyclonic gyres driven by buoyancy loss (cooling or evaporation) in semi-enclosed seas (e.g. the
Nordic Seas, Baltic Sea, Mediterranean Sea, Labrador Sea).

°C

Figure 2.5: Mean surface temperature and velocity of an idealized buoyancy-driven cyclonic gyre
driven by no wind stress and a surface heat loss of Qtot = −200W/m2 (source: Spall
2003). Clearly, because of the bottom pressure torque, a surface buoyancy forcing is
sufficient to drive a gyre circulation in the absence of any wind forcing.

2.4 Recirculation gyres

So far the only term of the barotropic vorticity balance that has not been analyzed is the so-called
non-linear vorticity advection:

Curl(A) =Curl
[∫

η

−h
(u.∇)uhdz

]
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The western intensification of gyres

It includes the lateral advection of relative vorticity and the transfers of vorticity by the relative
vortex stretching. It corresponds to the redistribution of vorticity by the ocean in motion. It is
referred to as nonlinear advection because, contrary to the planetary vorticity advection βV =∫ η

−h
d f
dt dz, it is nonlinear in velocities, meaning that if the flow is quasi-geostrophic, it can be

assumed small. However, along the western boundary, velocities become so intense that this term
cannot be neglected anymore. Although its net effect is null because it only redistributes spatially
the vorticity field, we will show that it explains the presence of intense western recirculation gyres
and hence the underestimation of gyre transports by the Sverdrup model.

Let us first characterize the recirculation gyres. Early idealized barotropic simulations with
a flat bottom had shown that the reduction of lateral dissipation caused an increase in vorticity
advection which in turn could become the leading-order term in the vorticity equation (Fig.2.6). In
particular, an intense recirculation gyre was observed offshore of the western boundary current, to
the northwestern corner of the gyre (Fig.2.6b). In this recirculation gyre, the barotropic vorticity
balance is dominated at the steady state by:

βV = −Curl
[∫

η

−h
(u.∇)uhdz

]
= −U.∇ζBT

meaning that the advection of planetary vorticity compensates for the advection of relative vorticity
(Fig.2.6c). In this Eulerian view, a recirculation gyre can develop if a convergence of anticyclonic
vorticity occurs to the east of the boundary current, and reversely to the west. In this case, the
equilibration by planetary vorticity advection will cause a southward flow to the east, and a north-
ward flow to the west. With this mechanism, the gyre circulation can be highly intensified without
any additional source of energy. This relation can also be interpreted from a Lagrangian point of
view. Indeed, the balance between both advective terms is just a consequence of the Lagrangian
conservation of potential vorticity, which writes in this flat bottom barotropic case as:

d(h f +ζBT )

dt
= 0

Hence neglecting the forcing (wind stress) and dissipation (lateral diffusion), the flow must follow
geostrophic contours which have constant h f + ζBT (Fig.2.6a,b). In most of the domain those
contours are blocked by boundaries because they are mostly zonal and dominated by f , and as
a consequence water masses cannot circulate freely. This is particularly visible to the southeast
which is well dominated by Sverdrup balance and hence where water parcels can only travel south
to the extent that wind stress curl permits it (Fig.2.6c). However within the recirculation gyre,
because of an intense ζBT , the potential vorticity is homogenized and water parcels can freely
undergo an intense circulation. In this area, the vorticity balance is purely inertial between the
beta effect and advection, so that forcing and dissipation become negligible (Fig.2.6c).

Those results are very common to high-resolution ocean models (typically 1/10◦, e.g. Fig.2.7)
when compared to their low-resolution counterparts (typically 1◦). In the latter the gyre circulation
is underestimated and follows closely Sverdrup predictions, whereas in the former gyres intensify
by a factor ∼ 3, becoming more realistic and largely departing from Sverdrup balance (Fig.2.7e).
In high-resolution models, the respective contributions of transient eddies and the mean flow can
even be separated by decomposing the vorticity advection term:

βV = −U.∇ζBT

= −U.∇ζBT −∇.U′ζ ′BT

with the classical Reynolds decomposition X = X +X ′ (with X either U or ζBT ) seen in Chapter 2.
Note that only the eddy fluxes U′ζ ′BT that are resolved by the model (typically mesoscale eddies)

20



The western intensification of gyres

B = beta effect
W = wind stress
F = lateral friction (= dissipation)
N = nonlinear advection
o, +, * = transitional regimes

a. Non-advective b. Advective

c. Advective : 
vorticity balance

ψ
BT

ψ
BT

ζ+f ζ+f

Figure 2.6: Barotropic circulation ΨBT and potential vorticity contours ζ + f in an idealized sub-
tropical gyre model a) with weak advection (A ∝ Dh/5) and b) with intense advection
(A ∝ Dh) and c) vorticity balance per main dynamical region in the advective case
(source: Boning 1986). Note that the authors refer to N as non-linear advection A and
F as lateral friction, which is identical to lateral dissipation Dh. Vorticity advection
creates a northwestern inertial zone which largely increases the gyre circulation.

can be explicitely diagnosed. Results show that both mean and eddy advection are important
for these recirculations (Fig.2.7b,c), although once again the bottom pressure torque appears as
a key ingredient (Fig.2.7d). Also, both the subtropical and subpolar gyres are concerned by this
intensification due to recirculation gyres, mostly along their western boundary currents (Fig.2.7a).

2.5 Eastern shadow zones

The time mean and vertically-integrated view that gyre circulation offers is misleading in several
ways. First it does not provide any transient view of how the time-dependent flow sets up and
interacts with the gyre circulation. This involves Rossby wave and mesoscale eddy dynamics and
will not be developped here. Second it only accounts for transport in the horizontal plane, hence
neglecting vertical overturning circulations occurring in the meridional or zonal planes. Those
overturning cells largely involve the buoyancy forcing (heat and water fluxes at surface), which do
not belong to this chapter. Lastly, and it will be our concern here, the vertical integration gives
the misleading feeling that the whole ocean column is ventilated by this gyre circulation. We
now try to identify whether some layers in the water column might be unventilated. For that, we
must abandon the barotropic vorticity formalism and introduce some depth dependence in the gyre
circulation.

First we note that due to Ekman pumping, the trajectory of water masses around the gyres
is not horizontal but slanted (Fig.2.8). This slanting is well approximated by the isopycnal slope
(slope of density lines) in the interior ocean because there, water parcels are mostly adiabatic
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a. Ψ
BT

b. Mean advection

c. Eddy advection

d. Pressure torque

e. Wind stress

Figure 2.7: a) Barotropic circulation ΨBT in an eddy-resolving (1/20◦ resolution) model and con-
tributions of b) mean advection, c) eddy advection, d) bottom pressure torque and e)
wind stress curl (source: Wang et al 2017). Most of the subtropical and subpolar gyre
circulation is due to an intense western boundary recirculation, which is driven by both
vorticity advection and the bottom pressure torque.

and hence they conserve a constant density. This is particularly visible in so-called isopycnal
models (vertical levels are density layers, as seen in Chapter 2) because "horizontal" velocities are
formulated along isopycnal levels, which are precisely not horizontal (Fig.2.8f). Noting that the
meridional gradient of the mixed layer depth is positive (Fig.2.8c), in the interior subtropical gyre,
water masses exit the mixed layer (they are subducted, Fig.2.8b) to the north and then they flow
southwest while sinking, isolated from surface (Fig.2.8d-f). Such water masses are named mode
waters. They can remain for decades below the mixed layer while turning around the subtropical
gyre, before resurfacing along the western boundary current (Fig.2.8f). They have a major role in
ventilating the interior of subtropical gyres, and they are also a potential source of decadal climate
predictability.

The question raised by the so-called "shadow zones" is whether some areas of the interior
ocean are not ventilated by those mode waters. The response can be found empirically by noting
that subtropical circulation streamlines of mode waters do not reach the southeastern boundary
in ocean models (Fig.2.8f) and in observations (Fig.2.9b). Also, the eastern subtropical gyres are

22



The western intensification of gyres

a. Ekman suction

Subduction

Mixed layer
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Ventilation

Ventilation

Subduction

Subpolar 
front

b. Subduction rate

c. Winter MLD

d. Meridional section of isopycnal layers
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Figure 2.8: Characterization of the gyre ventilation by subduction in an isopycnal ocean model
(source: New et al 1995). a) Annual Ekman suction rate (m/year), b) annual sub-
duction rate (m/year), c) March average mixed layer depth (MLD, m), d) meridional
section at 42◦W and e) zonal section at 35◦N of isopycnal layer depth (density every
0.15kg/m3, 26.70kg/m3 layer shaded) and f) isopycnal velocities in the 26.55kg/m3

layer. These model results give a clear picture of a slanted gyre circulation which does
not ventilate the southeastern corner.

depleted in O2 (Fig.2.9a), CFCs and nitrate-rich. Although O2 and nitrate concentrations are also
driven by biology, the low CFC concentration is a clear signal of weak ventilation.

The simplest model that gives a physical interpretation to these shadow zones is the so-called
2.5-layer model. It is constituted of two upper layers of constant density in motion, and a lower
layer at rest. At some latitude (say y = yS), layer 2 is subducted beneath layer 1 and ventilates
the interior ocean while conserving its potential vorticity, which is in this geostrophic case f/h2.
Hence any southward motion reduces f and must be accompanied by a shoaling of layer 2. At the
eastern boundary xE , this is forbidden by the no normal flow boundary condition: any variation
of h2 along the boundary would induce a zonal flow ug2 towards the continent. Hence once water
parcels have subducted at the eastern boundary (at the coordinates (xE ,yS)), they must move south-
westward to satisfy both potential vorticity conservation and the no normal flow condition at the
eastern boundary. This delimitates a shadow zone which is unaccessible to the gyre circulation.
Details of its location can be determined in this simple model by applying Sverdrup balance to
both upper layers, and results depend on the structure of the wind stress curl forcing.
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The western intensification of gyres

Figure 2.9: Observed O2 minimum (black contours) in relation to a) main Ekman upwelling re-
gions (shaded grey) and b) mode water trajectories (grey contours) within an isopycnal
layer of subducted waters (source: Karstensen et al 2008). The Eastern subtropical O2
minimum is particularly visible in the North Pacific. The associated Ekman pumping
suggests that it is influenced by the overlying biology, but circulation streamlines are
consistent with an isolation from the subtropical gyre.
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SSubduction line
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2
=constant

Figure 2.10: Horizontal sketch of the shadow zone in the 2.5 layer geostrophic model (adapted
from Vallis 2006). At the eastern boundary xE , at the latitude yS where layer 2 is
subducted below layer 1, water parcels conserve their geostrophic potential vorticity
f/h2. This forces them to move southwestward to comply with the no normal flow
condition at the eastern boundary.
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3 The Southern Ocean circulation

Contrary to other oceanic basins, the Southern Ocean does not display any gyre circulation, with
the small exception of the Weddell Sea. Instead, it is dominated by a mostly zonal flow, the
Antarctic Circumpolar Current (Fig.3.3a), making the ocean circulation similar to the overlying
atmosphere. This is the longest (24,000km) and most intense (∼ 150Sv) oceanic current of the
world ocean. In addition, the Southern Ocean is the main absorption area of the anthropogenetic
heat (Fig.3.1) and CO2 anomalies. We will analyze in the following how its singular circulation
relates to the absence of any continental barrier.

Ocean heat content trend 1979-2015

Figure 3.1: 1979–2015 ocean heat content trend map and zonally-integrated as a function of lati-
tude and depth (source: Shi et al 2018). The Southern Ocean stands out as the main
heat storage region.

3.1 Meridional overturning: the Deacon Cell

The Southern Ocean circulation is unique in the absence of any zonal boundary. A trivial conse-
quence is the absence of a net meridional flow. Indeed, by continuity, what goes south must balance
what comes north, otherwise the sea level would be ever increasing (or decreasing). However, as
we will see, this does not prevent intense meridional overturning cells from existing.

3.1.1 Ekman transports

The wind-driven meridional overturning cell is named the "Deacon Cell". Due to the absence of
continental obstacles, surface winds are essentially zonal, so that Ekman transports are northward
(to the left in the southern hemisphere). In addition, the wind stress curl forms a dipole north
and south of the Westerly jet (Fig.3.2b), so that Ekman pumping occurs south, and Ekman suction
north of this jet. We have just trivially described three branches of the Deacon Cell (Fig.3.2a),
and by continuity we can deduce that there must be a southward geostrophic branch in the interior
ocean.

To get insight into the structure of this southward branch, we can write the vorticity balance
separately for the surface Ekman layer and the interior geostrophic ocean, as we have done for the
gyre circulation. In the Ekman layer it writes, as shown before, as:

βVE + f w(−hE) =
1
ρ0

Curl(τ )
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The Southern Ocean circulation

a. Meridional overturning circulation b. Wind stress curl

c. Geostrophic f/h contours d. Barotropic circulation ψ
BT
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Figure 3.2: Meridional overturning circulation in the Southern Ocean: a) Deacon Cell from an
idealized model (source: Doos et al 1994), b) average wind stress curl (source: Leif
Thomas’s lecture), c) geostrophic f/h contours and d) barotropic streamfunction ΨBT

from an idealized model (source: Olbers et al 2007). The wind stress curl dipole
induces Ekman currents with pumping south and suction north of them, which activates
the wind-driven Deacon Cell. The vertically-averaged meridional circulation is null on
average but it can locally be intense due to topographic accidents.

This means that part of the wind vorticity input is equilibrated by the beta effect of Ekman currents,
and part of it is transmitted to the underlying geostrophic interior by the vortex stretching caused
by Ekman pumping.

3.1.2 Meridional geostrophic response

We now turn to the geostrophic vorticity balance that holds in the interior ocean. As seen before,
and in the presence of bottom topography, it writes as:

βVg = f w(−hE)+ J(Pb,h)

The fundamental role of topography can be illustrated by noting that over a zonal integral, we have
by continuity:

<VE >=−<Vg >

26



The Southern Ocean circulation

with < X >= 1
LACC

∫ xR+
xR−

Xdx the zonal mean of a quantity X over the whole circumpolar zonal ring
of length LACC (with xR an arbitrary reference longitude). Hence the zonally-integrated vorticity
balance of the geostrophic interior writes as:

< βVE +βVg > = 0

=
1
ρ0

<Curl(τ )>+< J(Pb,h)>

Without the bottom pressure torque, the interior ocean could not be in geostrophic balance because
there would be no equilibration of the wind stress curl in a zonally-integrated sense. Hence other
terms would need to be considered (e.g. vorticity advection, lateral diffusion, bottom friction) and
the nature of the flow would be substantially different.

The fact that the geostrophic interior has to lean on the topography to equilibrate the wind
stress curl also explains why the Deacon Cell extends very deep in the water column (Fig.3.1a).
Indeed, we have seen in the resolution of the Ekman spiral that wind-driven flows are typically
very shallow (hE ∼ 50m), so that the associated vertical motions do not extend very deep. This
coupling mechanism involving the bathymetry in the Deacon Cell is a striking illustration of how
some wind-driven flows can ventilate the deep ocean.

3.1.3 Interpreting the barotropic vorticity equation

Why have we not started the analysis of meridional circulation by using the barotropic vorticity
equation, as we did for the gyre circulation? Because as was mentioned before, due to the absence
of any continental barrier, there can be no net meridional flow across the Southern Ocean. In
particular, the Sverdrup balance cannot hold because there is no western boundary to support a
northward return flow and hence ensure continuity. If we assume vorticity advection Curl(A) and
turbulent horizontal diffusion Curl(Dh) to be small, the zonal mean barotropic vorticity equation
gives:

1
ρ0

< J(Pb,h)>+
1
ρ0

<Curl(τ )>= 0

The beta effect is cancelled in the absence of a net meridional flow. Thus although this equation
states nothing about the flow, we see once again the importance of the bottom pressure torque
and hence of topography. As we have seen before, the strong positive and negative wind stress
curls to the north and south of the Westerly jet can be equilibrated by a bottom geostrophic flow
going respectively up and down the bathymetry (opposite to the Northern Hemisphere because of
negative f ).

However, at a given longitude band, some net meridional transport can still occur, which is
given by the barotropic vorticity equation. In this case, we have:

βV =
1
ρ0

J(Pb,h)+
1
ρ0

Curl(τ )

meaning that at a given location along the Antarctic Circumpolar Current, the wind stress curl and
above all the bottom pressure torque can generate a net meridional flow. This is the source of
the so-called "standing meanders" of the Antarctic Circumpolar Current (Fig.3.1c-d) which, as we
will see, play a role in the oceanic meridional heat transfer.

3.2 Mean zonal circulation

How does a zonal wind stress induce a zonal current like the Antarctic Circumpolar Current? This
intuitive relation is complicated by the Coriolis acceleration which, at the steady state, induces a
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meridional ocean response to a zonal wind. We will also see that the slowdown of the Antarctic
Circumpolar Current is due to a non-intuitive mechanism.

3.2.1 Pressure gradient build-up by Ekman transports

Although wind-driven currents (the Ekman currents) are meridional for a zonal wind, they can
drive an intense zonal geostrophic flow through the coupling with tracers (temperature and salin-
ity). To illustrate that, let us consider how meridional Ekman transports can intensify a meridional
density front. We take the simple case of an initial density gradient of constant value and purely
driven by temperature ∂ρ

∂y (t = 0) = −αθ
∂θ

∂y (t = 0) = −αθ
∆θ

L . We assume a purely zonal steady
wind stress τ = τx(y)i and no heat source Θ̇ = 0. In the Ekman layer, the temperature conservation
simply writes as:

hE
∂θ

∂ t
=−VE

∂θ

∂y

which states that temperature trends are driven by the convergence of the Ekman heat flux. Hence
the time evolution of the temperature front is:

hE
∂

∂ t
(
∂θ

∂y
) = − ∂

∂y
(VE

∂θ

∂y
)

= −∂VE

∂y
∂θ

∂y

= −w(−hE)
∂θ

∂y

where we have neglected ∂ 2θ

∂y2 and ∂hE
∂y . We deduce the time evolution of the meridional temperature

gradient:

∂θ

∂y
(t) =

∂θ

∂y
(t = 0)exp

[
− w(−hE)

hE
t
]

=
∆θ

L
exp
[
+

∂τx/ f
∂y

√
f

ρ0
√

2κzu
t
]

Thus where Ekman pumping is negative, that is to the north of the Deacon Cell, Ekman transports
will tend to exponentially increase any initial meridional temperature gradient (Fig.3.3). Actually,
there is also a dependency to the Ekman depth hE because for a given Ekman pumping, the thinner
the Ekman depth, the stronger the resulting temperature trend within the mixed layer. Because
of the meridional gradient of solar radiation, there is always a meridional temperature gradient in
the Southern Ocean (Fig.3.3), so that this mechanism is always active. We have just illustrated
that Ekman transports can build up a strong meridional density gradient, which will induce in the
geostrophic interior the intense zonal Antarctic Circumpolar Current.
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a. The Antarctic Circumpolar Current b. Meridional sea level and temperature section

c. Zonal density section at 60°S

Subantarctic front

Polar front

Southern ACC front

Drake 
Passage

Kerguelen 
Plateau

Pacific 
Antarctic 

Ridge
Mid-Ocean 

Ridge

Figure 3.3: Zonal mean circulation in the Southern Ocean: a) the three main fronts of the Antarc-
tic Circumpolar Current (ACC), b) their sea level and temperature signatures (source:
Sokolov et al 2009), and c) zonal potential density section at 60◦S (source: Olbers et
al 2007). The ACC is mostly zonal although it meanders because of topography. It is
constituted of three main fronts that have sea level and temperature gradients of same
sign, indicating surface-intensified currents. The water column is heavier upstream
than downstream of topographic accidents, which slows down the zonal circulation.

3.2.2 Zonal interior geostrophic flow

As their is no zonal Ekman transport, the Antarctic Circumpolar Current is entirely determined by
the interior geostrophic flow. The vertically-integrated geostrophic flow writes as:

Ug =
∫

η

−h
ugdz

=
∫

η

−h

[
ug(−h)+

∫ z

−h

∂ug

∂ z
(z′)dz′

]
dz

= hug(−h)+
∫

η

−h

[∫
η

z′

∂ug

∂ z
(z′)dz

]
dz′

= hug(−h)+
∫

η

−h
z′

∂ug

∂ z
(z′)dz′
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neglecting the sea level variations and using the double integration rule to reverse the order of
integrals. This gives with the thermal wind relation:

Ug = hug(−h)+
g

ρ0 f

∫
η

−h
z
∂ρ

∂y
dz

' g
ρ0 f

∫
η

−h
z
∂ρ

∂y
dz

We have just written the same transport equation as in the Drake Passage exercise of Chapter 2,
assuming bottom velocities are small. This diagnostic equation illustrates the coupling between
the dynamics and tracers that sets up the Antarctic Circumpolar Current: its intense geostrophic
velocities are driven by meridional density (mostly temperature, Fig.3.3b) gradients, themselves
enhanced by the Ekman pumping. We must stress that meridional density gradients are also driven
by surface buoyancy (heat and water) fluxes.

Meridional density gradients are mostly located near the surface (Fig.3.3b), which makes of
the Antarctic Circumpolar Current a surface-intensified current, like most oceanic currents. We can
also note that it is constituted of several fronts which delimitate sub-currents at different latitudes
(Fig.3.3a-b). Finally, its magnitude relates to its vertical extent which is among the largest for a
surface-intensified current (Fig.3.3b). Hence it redistributes globally not only surface waters but
also deep waters of the thermohaline circulation.

3.2.3 What slows down the Antarctic Circumpolar Current?

When integrating vertically the zonal momentum equation, the question arises of which physical
term slows down the Antarctic Circumpolar Current. Indeed, as we have just seen, it is accelerated
by the zonal wind stress, but similarly to the gyre circulation, neither lateral momentum diffusion
nor bottom friction are strong enough to equilibrate surface wind stress. This role is played, once
again, by the bottom pressure force, through the so-called "bottom form drag". Indeed, the zonally
and vertically-integrated zonal pressure force is:

<
∫

η

−h

∂P
∂x

dz > = <
∂

∂x
(
∫

η

−h
Pdz)>−< p(η)

∂η

∂x
>+< P(−h)

∂ −h
∂x

>

' −< P(−h)
∂h
∂x

>

using Leibniz’s integration formula and neglecting sea level variations. Hence for the zonal pres-
sure force to slow down zonal motion, bottom pressure must be on average higher upstream than
downstream of seamounts. In this case the pressure force exerted by the seamount on the ocean
will be directed westward, hence compensating for the surface wind stress. Because velocities
are surface-intensified, bottom pressure gradients are dominated by surface pressure, that is by
sea level variations, although they are almost entirely equilibrated by baroclinic pressure gradients
so that bottom velocities are small. Hence we have a positive sea level anomaly, although also a
negative density anomaly, upstream of the main topographic accidents, and reversely downstream
of them (fig.3.3c).

3.3 Role of eddies

3.3.1 Eddy-driven meridional heat transport

Similarly to the atmosphere, the Southern Ocean poleward heat transport is dominated by transient
eddies. This is a unique characteristic in the world ocean which transports heat by the mean
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circulation (either gyre or overturning) at all other latitudes (Fig.3.4a). Indeed, in the Southern
Ocean, the mean meridional circulation is relatively weak and dominated by the Deacon Cell.
Within this cell, surface waters are advected equatorward by Ekman currents, whereas colder deep
waters are advected southward (Fig.3.4b-c). This induces an equatorward heat transport. On the
contrary, eddy heat advection is poleward. The physical mechanism is identical to the atmosphere:
transient quasi-geostrophic eddies are formed by baroclinic instability and restratify the ocean, that
is, they advect buoyancy (mostly heat, Fig.3.4c) southward. This eddy heat advection occurs half
above 200m depth, and half below (Fig.3.4c). Hence eddy heat advection is surface-intensified.

a. Ocean meridional heat transport

b. Polar front location

c. Polar front meridional 
heat transport

Total

Mean

Eddy

Figure 3.4: a) Meridional heat flux decomposed between the mean and eddy transport in a high-
resolution (1/10◦) ocean model (source: Griffies et al 2015), and b-c) its decomposi-
tion as a function of depth and longitude along the Polar Front (source: Duffour et al
2016). The Southern Ocean is singular in that the eddies, not the mean flow, transport
heat poleward. The mean flow is due to Ekman transports, whereas the eddy transport
is driven by surface-intensified eddies.

3.3.2 Role of standing meanders

Although the meridional heat advection by mean currents occurs on average northward at the
latitudes of the Antarctic Circumpolar Current, so-called "standing meanders" can advect heat
poleward. To illustrate them, let us decompose mean transports as

Uh =< Uh >+Uh
∗

with < Uh > the zonal mean average transports and Uh
∗ their zonal anomaly. Similarly we have

mean temperatures:
θ =< θ >+θ ∗
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Hence neglecting vertical variations of Uh and θ , we deduce zonally averaged meridional heat
transports by standing meanders: < V ∗θ ∗ >. It happens that meanders advect anomalously cold
waters θ ∗ < 0 northward V ∗ > 0, and reversely anomalously warm waters southward, so that the
zonal mean transport by those meanders is poleward:

<V ∗θ ∗ >< 0

This is simply because waters advected northward come from the south where they have been
cooled down by surface heat fluxes, and vice versa for waters coming from the north. However,
the Deacon overturning cell still dominates the meridional heat advection by mean currents, so
that the net mean heat transport (overturning plus vertical-mean) is equatorward.

3.3.3 Role of transient eddies

Transient mesoscale eddies are ubiquitous in the world ocean. They are particularly intense
in baroclinic mid-latitude oceanic regions such as western boundary currents and the Antarc-
tic Circumpolar Current, which indicates their dominant formation through baroclinic instability
(Fig.3.5a). Their magnitude is most commonly diagnosed by computing the temporal standard
deviation of dynamic sea level. Indeed, this physical parameter is observable from altimetry at a
reasonable resolution and its variations are dominated by mesoscale eddies (Fig.3.5b). This is an
indication that instantaneous surface geostrophic velocities are dominated by those eddies, as we
have seen in Chapter 1.

Transient eddies are mostly created by extraction of available potential energy through baro-
clinic instability. This means that they advect buoyancy (mostly heat) poleward. Let us first
consider the consequences for the meridional flow. First, as we have seen, they play a large role at
mid-latitude in ocean meridional heat transports. Second, they induce an meridional overturning
transport of buoyancy which is opposed to the Deacon cell, although it is not visible in terms of
time mean volume transports. This effect is called the "eddy rectification". It can be quantified
with the so-called "transformed Eulerian mean" formalism. The principle is to decompose eddy
density fluxes (mostly temperature fluxes) into an isopycnal component that writes as a transport
streamfunction and a diapycnal component that write as a diffusivity. To illustrate that let us con-
sider the zonally-averaged mean density equation in the adiabatic ocean interior:

∂ρ

∂ t
+(v.∇)ρ +∇.v′ρ ′ = 0

where we have decomposed the advection term into the mean and eddy transports, v = (v,w) and
∇= ( ∂

∂y ,
∂

∂ z) denote the zonally-averaged velocities and gradient. Density is conserved, so that its
time evolution at a given location is only due to its advection in the meridional plane by mean and
eddy velocities. Now let us decompose the eddy transport into a component parallel to isopycnals
and another one normal to them:

v′ρ ′ = χ∇
¬

ρ +K∇ρ

with ∇
¬
= ( ∂

∂ z ,−
∂

∂y) the rotated gradient operator (90◦ clockwise to ∇), χ the along-isopycnal
eddy transport and K the across-isopycnal eddy transport given by the formulas:

χ =
v′ρ ′.∇

¬
ρ

(∇ρ)2

K =
v′ρ ′.∇ρ

(∇ρ)2
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a. Detection of 2495 eddies on 28-Aug-1996

b. Temporal standard deviation of sea level c. Relation sea level – 
eddy amplitude

Figure 3.5: a) Snapshot of dynamic sea level on 28-Aug-1996 (shades) and eddy tracking (con-
tours). b) Temporal standard deviation of sea level (high-pass flitered) and c) its spatial
scatterplot with the average eddy sea level amplitude (source: Chelton et al 2011).
Mesoscale eddies are ubiquitous, especially around the Antarctic Circumpolar Cur-
rent, and they dominate surface geostrophic velocities.

We have just projected the eddy transport term onto a new coordinate system following density
surfaces. Now the interest of this operation is that the eddy transport divergence term of the density
equation now writes as:

∇.v′ρ ′ = ∇.(χ∇
¬

ρ)+∇.(K∇ρ)

The second term has the form of the usual eddy diffusivity introduced for the closure of turbulence,
as we have seen in Chapter 2. However, there is an additional term which does not take the form
of a diffusivity. Let us develop it:

∇.(χ∇
¬

ρ) =
∂

∂y
(χ

∂ρ

∂ z
)+

∂

∂ z
(χ(−∂ρ

∂y
))

=
∂ χ

∂y
∂ρ

∂ z
− ∂ χ

∂ z
∂ρ

∂y
= −∇

¬
χ.∇ρ

This shows that χ is the streamfunction of the eddy-induced transport. Indeed, if we introduce
v∗ =− ∂ χ

∂ z and w∗ =+ ∂ χ

∂y , we find the following density equation:

∂ρ

∂ t
+((v+v∗).∇)ρ +∇.(K∇ρ) = 0
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So far we have made no approximation. Our decomposition has just permitted to illustrate that
eddy transports take the form of eddy-induced velocities plus eddy diffusivities. Now we must
close turbulent terms χ and K to resolve this equation. We first make the so-called "eddy adiabatic"
assumption K = 0, which states that eddies transport tracers along isopycnals. This allows to
introduce only one closure equation (e.g. for v′ρ ′) and deduce the second (w′ρ ′) so that the eddy
flux is isopycnal:

v′ρ ′ = −κ
∗ ∂ρ

∂y

=⇒ w′ρ ′ = −(∂ρ

∂y
/

∂ρ

∂ z
)v′ρ ′

= −κ
∗s

∂ρ

∂y

= +κ
∗s2 ∂ρ

∂ z

with κ∗ the isopycnal eddy diffusivity and s =−( ∂ρ

∂y /
∂ρ

∂ z ) the isopycnal slope. Finally, and thanks
to the "eddy adiabatic" hypothesis, we obtain a very simplified expression for χ:

χ =
v′ρ ′.∇

¬
ρ

(∇ρ)2

=
v′ρ ′
∂ρ

∂ z

× 1+ s2

1+ s2

= −κ
∗(

∂ρ

∂y
/

∂ρ

∂ z
)

= +κ
∗s

After a lot of pain, we have just formulated the streamfunction that defines the "eddy-induced
velocities" introduced in Chapter 2. It is used as a parametrization of eddies in all low resolution
(∼ 1◦) ocean models because it largely improves the mean flow and water mass distribution. Now
we know that it only depends on an isopycnal diffusivity κ∗ which can be taken either constant or
variable, and on the spatial variations of isopycnal slopes. In a high resolution ocean model, it is
resolved so that values of κ∗ can be determined. Going back to the Southern Ocean, this eddy-
induced overturning (Fig3.6c) is opposite to the mean overturning (Fig3.6b), so that the overturn-
ing felt by tracers (e.g. temperature), called the residual circulation, is weakened (Fig3.6a). The
eddy-induced overturning advects light (warm) waters poleward and dense (cold) waters equator-
ward, which also explains the intense poleward heat transport by eddies.

Finally, transient eddies also modify the zonal mean flow. As we have seen before, the thermal
wind relation states that the magnitude of zonal transports is closely related to meridional gradients
of buoyancy. Hence a sink of available potential energy reduces buoyancy gradients and the mean
currents. The resulting circulation in the Antarctic Circumpolar Current is weaker than it would
be in their absence. This effect is qualified as the "eddy saturation" of the mean zonal flow.

3.4 An energetic interpretation: the oceanic Lorenz Energy
Cycle

The Southern Ocean circulation highlights the importance of both the mean and eddy dynamics.
For this reason it is very enlightening to analyze the oceanic Lorenz Energy cycle, which describes
exchanges between the main reservoirs of mechanical energy (Fig.3.7a). Without developing the
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a. Residual mean overturning b. Mean flow overturning c. Eddy-induced overturning

Figure 3.6: Residual mean, mean and eddy-induced meridional overturning diagnosed in the
Southern Ocean (source: Farneti et al 2010). The vertical coordinate is density and
can be considered similar to depth. Because of transient eddies, the wind-driven over-
turning is weakened, which transports heat southward and weakens the Antarctic Cir-
cumpolar Current.

equations for each reservoir, we define the available potential energy (P) as the gravitational poten-
tial energy with respect to a horizontally homogeneous reference state, that is the energy available
for baroclinic conversion into kinetic energy. We separate both the P and kinetic energy (K) reser-
voirs into a mean (Pm and Km) and eddy (Pe and Ke) component, respectively for the time mean
and time-varying contributions.

Fist we have seen that the mean circulation in the Southern Ocean is set up by the wind forc-
ing. It is evident from the Lorenz energy cycle that wind work (G(Km)) is the main source of Km.
Second we have identified that Ekman pumping builds meridional density gradients, that is Pm:
it corresponds to the C(Km,Pm) flux. Pm can also be directly created by buoyancy (mostly heat)
fluxes at surface (G(Pm)) which contribute to meridional density gradients. Once this large Pm has
been built, it can be converted by baroclinic instability (C(Pm,Pe) and C(Pe,Ke)) into Ke which
constitutes by far the main kinetic energy reservoir of the ocean. Those eddies have extracted Pm
from the system, which corresponds to the meridional heat transport and the rectification of the
flow. They can finally transfer kinetic energy to lower scales where it will ultimately have to be
dissipated (D(Ke)) so that at steady state, sources and sinks of mechanical energy are equal. We
note that transfers between Km and Ke are limited, meaning that neither component drives the
other: their is neither intense barotropic instability (C(Km,Ke)) nor an intense inverse cascade
(C(Ke,Km)).

Comparison with the atmospheric Lorenz Energy cycle (Fig.3.7b) illustrates striking differ-
ences which are due to the different nature of their forcings. In the atmosphere, the forcing is di-
abatic, so that it increases Pm. From that, atmospheric dynamics must extract this energy through
baroclinic conversion to be set into motion. Ultimately, it is the transient eddies that drive the
mean circulation through the so-called inverse cascade. In this sense, eddies have a greater role in
atmospheric than oceanic circulation, and the atmosphere has a much less forced and more internal
dynamical nature than the ocean.
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a. Oceanic Lorenz Energy Cycle b. Atmospheric Lorenz Energy Cycle

Figure 3.7: a) Oceanic and b) atmospheric Lorenz Energy Cycles deduced from high-resolution
simulations (source: von Storch et al 2012). Conversion terms are noted C, generation
G and dissipation D. Both fluids are strikingly different owing to the different nature
of their forcings.
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Along the Equator, the ocean dynamics are fundamentally different because the Coriolis accel-
eration cancels out. This generates very fast waves that make of the ocean and atmosphere a
coupled system, contrary to extratropical latitudes. In addition, due to the weakness of the Cori-
olis force, currents are very strong and unbalanced, with a wind-driven flow extending to higher
depth. However, not far from the Equator, geostrophic and Ekman balances are restored, and even
in the Equatorial band winds play a determinant role in the circulation. Therefore the circulation
remains largely wind-driven and under the effect of rotation. In the following, we will focus our
attention, as in the rest of this chapter, on the time mean equatorial circulation, hence excluding
modes of variability such as El Niño - Southern Oscillation (ENSO). As a consequence, the time
mean circulation described here excludes the anomalous El Niño phase of ENSO and the summer
monsoon regimes.

4.1 Meridional circulation

Near the Equator, the meridional circulation is complexified by the strong modulations of Ekman
transports. From the maximum trade wind jet (around ±10−15◦ of latitude), trade winds weaken
to reach the so-called "doldrums" at the Inter-Tropical Convergence Zone (see Fig.2.2). However,
the Coriolis parameter also varies rapidly to cancel at the Equator. As we will see, these variations
generate the Tropical Gyres, the Tropical Cells and the Subtropical Cells.

4.1.1 Tropical gyres

In the ∼ 5− 15◦ latitude band, as predicted by Munk (see Fig.2.2), tropical gyres are generated
by the positive Ekman pumping due to the poleward intensification of trade winds (Fig.4.1a).
Symmetrically to subtropical gyres, the Ekman pumping induces a poleward interior Sverdrup
transport (Fig.4.1b) which is returned by an equatorward western boundary current (Fig.4.1c). The
subtropical-tropical gyre separation defines the North Equatorial Current, whereas the southern
edge of the tropical gyre defines the North Equatorial Countercurrent.

However, Sverdrup theory predicts much weaker transports than what is observed (Fig.4.1b-
c). In particular, the North Equatorial Countercurrent is part of the Equatorial current system and
largely deviates from Sverdrup balance. Therefore it is mostly unrelated to gyre dynamics sim-
ply because Sverdrup theory does not hold anymore near the Equator. In addition, those tropical
gyres are a much less steady feature of ocean circulation than their subtropical and subpolar coun-
terparts. The Ekman pumping associated with trade winds almost cancels in the winter of each
hemisphere, so that the corresponding tropical gyres also weaken, or even disappear as is the case
in the tropical North Atlantic. Finally, trade winds are interrupted by the seasonal to interannual
variability associated with ENSO and the monsoon systems, and hence so are the tropical gyres.
This last point is true of the tropical circulation as a whole.

4.1.2 Tropical cells

Moving closer to the Equator, in the Deep Tropics (±5◦ latitude band), the Ekman pumping is
not dominated by the wind stress curl (the trade wind weakening) anymore but by the beta effect.
In the Equatorial beta plane, the Coriolis parameter is: f = βy ' 2Ω

Ra
y with Ra the Earth’s radius.
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b) Sverdrup transports

c) Observed transports

Sv

a) Wind stress curl

Figure 4.1: a) Observed wind stress curl, b) vertically-integrated transports predicted from Sver-
drup theory and c) observed vertically-integrated transports in the Tropical Pacific
(source: Kessler et al 2003). Despite a wind stress curl driving a Tropical Gyre on
each side of the Equator, the predicted Sverdrup transport is by far underestimated,
especially in the Deep Tropics. This is because the geostrophic balance falls apart near
the Equator.

Hence the Ekman pumping becomes:

w(−hE) =
1
ρ0
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τ
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1
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[
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∂x
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y
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]
Near the Equator, the first term, that is the beta effect, becomes dominant in the Ekman pumping.
Indeed, it becomes more and more difficult for Coriolis acceleration to balance pressure gradi-
ents and the surface wind stress. As a consequence, the dynamics deviates significantly from
geostrophic and Ekman balances, and stronger currents are required to balance both physical forc-
ings. Hence, the average Ekman pumping becomes negative around 5◦ of latitude. However, at

38



The Tropical circulation

the Equator, the Coriolis acceleration cancels out and so do the Ekman transports, so that as we
have seen in a previous exercise there is an intense upwelling along the Equator. We have just
described, similarly as the Deacon Cell, three branches of a wind-driven meridional cell, one on
each side of the Equator. They are the oceanic Tropical Cells (Fig.4.2a). By continuity, just like
the Deacon Cell, there should be an interior equatorward return flow. This return flow is also
geostrophic because as for Ekman currents, geostrophic balance is restored a few degrees away
from the Equator. However, contrary to the Deacon Cell, there are zonal boundaries at the Equator
so that this return flow is supported by each basin’s zonal pressure gradient. The zonal pressure
gradient is itself built up by zonal Equatorial currents driven by trade winds that push warm waters
in the so-called western "Warm Pools" (see Fig.4.3 and Fig.4.6).

a) Meridional overturning (Sv) and 
potential density (kg/m³)

b) Location and volumic flux (mSv) of parcels 
reaching the Equatorial Undercurrent

Figure 4.2: a) Meridional overturning streamfunction and potential density section from a numer-
ical model of the Tropical Indo-Pacific (source : Hazeleger et al 2001) and b) location
and volumic flux of simulated Lagrangian parcels reaching the Pacific Equatorial Un-
dercurrent (source: Goodman et al 2005). The intense Tropical Cells lie within 5◦ of
the Equator and the more diffuse Subtropical Cells span the whole subtropical band.
They both feed the Equatorial Undercurrent, although the latter dominates this equa-
torward transport.

4.1.3 Tropical Instability Waves

The Deep Tropics are the only region where the ocean dominates over the atmosphere in the
meridional heat transport (see Fig.4.7 of Chapter 1). This is due primarily to the Tropical Cells that
advect light (warm) surface waters poleward and denser (colder) subsurface waters equatorward
(Fig.4.2a). However, there is a striking similarity with the Southern Ocean heat transport in that the
eddy transport opposes the wind-driven mean transport (Fig.3.4a). In the Deep Tropics, contrary
to the Southern Ocean, it is a poleward mean transport that dominates the total whereas the eddy
transport is oriented equatorward. Another difference is that it is barotropic and not baroclinic
instability that generates the eddy transport. Indeed, Tropical Instability Waves are clearly visible
in instantaneous SST maps (Fig.4.3). They are larger than mesoscale eddies (L∼ 1000km) because
of the low Coriolis parameter. They are fed by the strong meridional shear of zonal Equatorial
currents (see next section). It can be shown using the Tranformed Eulerian Mean formalism,
similarly as in the Southern Ocean, that because of those instabilities, the residual (mean plus
eddy-driven) overturning transport, which is felt by tracers such as temperature, is much weaker
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than the mean overturning due to the Tropical Cells.

Figure 4.3: Sea surface temperature in November 1998 from a nested high-resolution simulation
(36 to 4km resolution) of the Tropical Pacific (source: Marchesiello et al 2011). Trop-
ical Instability Waves are clearly visible and they tend to reduce the meridional heat
gradient and transport.

4.1.4 Tropical-subtropical connections: the Subtropical Cells

Let us zoom out for a moment and consider the meridional circulation of the wide subtropical
band (±30◦ of latitude). We have seen that across this region, there is poleward Ekman trans-
port driven by Easterly winds. Although it varies with latitude, in a meridionally integral sense,
it corresponds to the upper branch of a planetary overturning cell that upwells in the Equator
where northward Ekman transports are accelerated and sinks within the subtropical gyre where
they cancel out (Fig.4.2a). Once again, by continuity, a return flow must exist in the interior
ocean. Now because of the northward interior flow within the Tropical Gyres, this southward
flow occurs southwestward within the Subtropical Gyre, and then through the western boundary
current of the Tropical Gyre where it feeds western equatorial basins. It ultimately upwells along
the Equator. We have just described the pathway of mode waters connecting the Subtropics to
the Tropics, defining the so-called Subtropical Cell (Fig.4.2b). They are the main source of inte-
rior equatorward convergence, although Tropical Cells also contribute to it (Fig.4.2b). Similarly
to mode waters recirculating within the Subtropical Gyre (see Fig.2.8), they are mostly adiabatic
once they subduct below the mixed layer within the Subtropical Gyre. Hence they mostly conserve
their properties until they resurface at the Equator years later. Thus they might also be a source of
decadal climate variability and predictability.

4.2 Zonal circulation

Although the meridional circulation drives the poleward heat transport, the most intense circulation
features of the Deep Tropics are zonal. We have already mentioned the North Equatorial Current
and Countercurrent, but even more intense zonal currents lie along the Equator. Their exceptional
magnitude is related to the cancellation of the Coriolis acceleration at the Equator.
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4.2.1 South Equatorial Currents

In the Deep Tropics, oceanic motion largely departs from Geostrophic balance. The Equatorial
Rossby number is:

Ro =
U
f L

=
U

βL2 '
RaU
2Ωy2 '

1×107

1.5×10−4× (2.5×105)2 ' 1

with y = 250km (that is φ ' 2◦) the meridional extent. This qualifies so-called submesoscale
dynamics in the ocean. The effect of rotation is still felt by water masses, but advective effects
become as important. Indeed, we also have Ro= ζ/ f ' 1. Such dynamics are usually encountered
for very small oceanic scales (∼ 1− 10km, see Chapter 2), but exceptionally, it also concerns
large-scale motion along the Equator. The dynamical challenge is that, as we will see, all terms
of the horizontal momentum equations seen in Chapter 2 become important (Fig.4.5). However,
outside of the Deep Tropics, the dynamics rapidly become quasi-geostrophic again. Indeed, the
Rossby radius scales as 1/y2, so that Ro∼ 0.1 for y' 250km×

√
10' 800km, that is at φ ' 7◦ of

latitude. Both dynamical regimes characterize the South Equatorial Currents which confusingly
gather westward currents extending from 3◦N to 20◦S.

Along the Equator, the Coriolis acceleration can no longer balance the westward wind stress
caused by Easterlies. Hence the flow is accelerated westards until water masses that accumulate in
the western Warm Pool build up an eastward pressure gradient that balances wind stress. We have
just characterized the Equatorial South Equatorial Current (eSEC, Fig.4.4). Its pressure gradient
is clearly visible at surface from the zonal slope of the dynamic sea level, as identified in Chapter
1, Fig.2.1. The abyssal ocean being mostly at rest, this means from Margules’s relation seen in
Chapter 1 that an opposite thermocline slope exists in the interior ocean (Fig.4.6a-b). With a
typical dynamic sea level difference of ∆η '−60cm in the Equatorial Pacific, Margules’s relation
gives a thermocline depth difference of ∆h'−200×∆η '+120m. Such a zonal section is typical
in the tropical Pacific of a neutral ENSO anomaly (Fig.4.6c), and it is enhanced during La Niña
events.

Exercise: zonal sea level slope within the frictional surface layer. We suppose a surface fric-
tional layer of depth H = 100m where zonal pressure gradients balance the surface wind stress.
We assume a homogeneous layer of density ρ0 = 1025kg/m3. Deduce the zonal sea level gradient
balancing a trade wind of magnitude u10m = −5m/s. To what zonally-integrated sea level differ-
ence does it correspond in the Equatorial Pacific of width W = 8,000km? We assume g∼ 10m2/s,
ρa ∼ 1kg/m3 and Cd ∼ 2×10−3.

Solution: the zonal momentum equation writes as:

0 = − 1
ρ0

∂P
∂x

+
∂

∂ z
(κzu

∂u
∂ z

)

⇐⇒ 0 = −g
∂η

∂x
+

∂

∂ z
(κzu

∂u
∂ z

)

Integrating over the frictional surface layer yields:

gH
∂η

∂x
=

[
κzu

∂u
∂ z

]η

−H

=
τx

ρ0
=−

ρaCdu2
10m

ρ0

=⇒ ∆η = −
WρaCdu2

10m
ρ0gH

'−40cm

which is of the right order of magnitude.
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Figure 4.4: Observed meridional section of zonal currents and potential temperature across the
central Tropical Pacific (155◦W , between Tahiti and Hawaii, source: Lu et al 1998).
At the Equator, we see the surface wind-driven eSEC and below the pressure-driven
Equatorial Undercurrent. At ∼ 1− 4◦ of latitude, the westward nSEC and cSEC are
associated with a poleward temperature gradient. Around 5◦ of latitude are the intense
North Equatorial and the weak South Equatorial Countercurrents, associated with an
equatorward temperature gradient. Finally, between∼ 10−20◦ of latitude, we find the
westward North Equatorial Current and sSEC associated with a poleward temperature
gradient, which are the southern branches of subtropical gyres.

On each side of the eSEC, in the Deep Tropics, lie the Northern and Central South Equatorial
Currents (nSEC and cSEC, Fig.4.4). The wind stress still accelerates their westward flow, but
the Coriolis acceleration becomes important so that the meridional pressure gradient also drives
the westward flow. Indeed, because of the Equatorial upwelling, an intense equatorial sea level
minimum causes a poleward pressure gradient and hence a westward geostrophic flow (Fig.4.4).
Despite these dominant mechanisms, let us repeat that as for the eSEC, all terms of the zonal
momentum equation are important in the dynamics of the nSEC and cSEC. In particular, lateral
turbulent exchanges associated with Tropical Instability Waves also intervene.

Finally, outside of the Deep Tropics, the southern South Equatorial Current (sSEC, Fig.4.4)
is the Southern Hemisphere counterpart of the North Equatorial Current, that is the westward
return flow of the subtropical gyre. Its dynamics are quasi-geostrophic and hence simpler and not
equatorial anymore.

The very large magnitude of the South Equatorial Currents located in the Deep Tropics (∼
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1m/s, Fig.4.4) reveals the weakness of Coriolis acceleration. First, because surface currents are
more aligned to surface winds, the wind work is largely increased which permits higher levels
of kinetic energy, despite modest winds along the Equator. Second, the vertical extent of the
wind-driven current is not limited anymore by Coriolis acceleration, so that it can reach much
higher depth (h ∼ 200m) than Ekman currents (hE ∼ 50m). Indeed, vertical turbulent momentum
fluxes are not balanced anymore by Coriolis acceleration, so that they must penetrate deeper for
other terms of the zonal momentum equation (e.g. pressure gradient force, lateral turbulent fluxes,
interactions with the Equatorial Undercurrent, see Fig.4.5) to balance them.

4.2.2 North Equatorial Countercurrent

Although it also constitutes the southern edge of the Northern Tropical Gyre, the North Equatorial
Countercurrent’s very large magnitude (up to∼ 1m/s) cannot be simply explained by gyre dynam-
ics. Indeed, it is above all the geostrophic response to the intense Ekman suction at the northern
edge of the northern Tropical Cell. The meridional pressure gradient is opposite to that along the
Equator driving the nSEC and cSEC (Fig.4.4), so that geostrophic currents are eastward. We note
that the mechanism resembles the Antarctic Circumpolar Current responding to Ekman suction to
the north of the Deacon Cell. However in this case, the magnitude of zonal currents is more due
to the weak Coriolis parameter than to the large meridional pressure gradient. Indeed, similarly
to Ekman currents within the Tropical Cells, the Coriolis parameter is weak at its latitude (∼ 5◦)
so that intense geostrophic currents are required for the geostrophic balance to be reached. Also,
a striking difference is that the North Equatorial Countercurrent opposes the surface wind stress,
contrary to the Antarctic Circumpolar Current. The relative weakness of Coriolis acceleration also
means that other terms of the horizontal momentum balance matter for the dynamics of the North
Equatorial Countercurrent. Note that due to the meridional assymetry of the overlying atmosphere,
a South Equatorial Countercurrent is weak to absent in the Southern Hemisphere.

4.2.3 Equatorial undercurrent

The Equatorial Undercurrent is probably the most striking illustration of the unique nature of
Equatorial dynamics. This depth-intensified current reaches a maximum of ∼ 1m/s around 100−
200m depth with no surface signature (Fig.4.4 and Fig.4.6c). It constitutes the strongest oceanic
current that is not surface-intensified, and it is associated with the largest vertical and lateral shears
of the World ocean. It is centered at the Equator, so that its direction is opposite to the local
wind forcing. Its meridional shear causes strong barotropic instabilities that generate the Tropical
Instability Waves, themselves crucial to its equilibration (Fig.4.5). More generally, every single
term of the zonal momentum equation is important for its dynamics and no approximation can be
made (Fig.4.5).

From a zonal point of view the Equatorial Undercurrent can be separated into a western
acceleration and an eastern deceleration sector (Fig.4.5). To the west, the zonal pressure gradient
generated by surface South Equatorial currents is not equilibrated anymore by frictional stresses
below the frictional layer of depth H ' 100m. Hence an intense zonal acceleration of the flow
occurs. Assuming the zonal pressure gradient is purely barotropic (namely, driven by the sea level
gradient), the zonal momentum equation writes as:

du
dt

=−g
∂η

∂x
'+10× 0.60

8×106 ' 10−6m/s2

with du
dt ' u ∂u

∂y for a purely zonal steady state. Thus integrating from the western boundary where
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Figure 4.5: Zonal momentum balance along the Equatorial Atlantic from a numerical model
(source : Wacongne 1989). All terms of the momentum balance are important. Three
sectors clearly stand out: the surface eSEC area (1) under the effect of wind stress, the
western Equatorial Undercurrent (2) accelerated by the pressure gradient and the east-
ern Equatorial Undercurrent (4) slowed down by meridional eddy export of momen-
tum. In between are transitional areas (3) involving all terms except vertical friction.

the boundary condition imposes no normal flow, we obtain:

u(t) = 10−6t; x(t) = 0.5×10−6t2

=⇒ u = 1.5m/s ⇐⇒ t = 1.5/10−6 ' 15days; x = 0.5×10−6×1.52×1012 ' 1,000km

This gives a lower bound for the western boundary width where the Equatorial undercurrent is
accelerated. To the East, the zonal pressure gradients weaken and meridional eddy momentum
fluxes due to the Tropical Instability Waves are a sink of zonal momentum. Also, due to the intense
equatorial upwelling, the Equatorial Undercurrent is slanted. It is shallower to the East, where it
can ultimately feel surface wind stress that slows it down. In this case, the zonal momentum
equation writes as:

du
dt

=−g
∂η

∂x
+

∂

∂ z
(κzu

∂u
∂ z

)+
∂

∂y
(κhu

∂u
∂y

)

The second term to the right hand side is the vertical turbulent momentum flux that transmits
downward the wind stress and is opposed to the Equatorial undercurrent. The third term is the
eddy meridional momentum flux. It is negative because within the Equatorial Undercurrent, the
meridional curvature of velocities is negative (barotropic instability exports momentum poleward).

However, from a meridional point of view, the picture is slightly different. Indeed, as we
have seen regarding the meridional transport, water masses that feed the Equatorial Undercurrent
come partly from the Deep Tropics, and mostly from the Subtropics. Those water masses are
essentially adiabatic, so that their potential vorticity is reasonably conserved. For an isopycnal
layer of thickness h, it writes as ( f + ζ )/h. Assuming that the water parcel has subducted at a
latitude yS where ζS << fS, that is Ro << 1, then we deduce by conservation of potential vorticity:

ζ +βy
h

=
fS

hS
=

βyS

hS
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a) Potential temperature

b) Potential density

c) Zonal currents and isopycnal thickness
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Figure 4.6: Observed mean zonal section of a) potential temperature and b) potential density along
the Equatorial Pacific (source: Leif Thomas’s lecture) and c) near real-time zonal cur-
rent and isopycnal thickness (layers numbered with increasing density) in September
2018 from MYCOM analysis (source: US Navy). A clear zonal temperature and hence
potential density gradient is visible, which illustrates the westward eSEC and equato-
rial upwelling. It induces the intense Equatorial Undercurrent which follows isopy-
cnals and is progressively upwelled along its path. The ENSO anomaly is here near
neutral.

If we assume zonal currents dominate (ζ '− ∂u
∂y ), we deduce an upper bound for zonal velocities

at the Equator assuming the isopycnal thickness remains constant h = hS and the parcels subduct
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with a weak velocity u(yS)' 0:

∂u
∂y

= β (y− yS)

=⇒ u(y = 0) = βy2
S/2−u(yS)' βy2

S/2

=⇒ u(y = 0) = 1m/s ⇐⇒ yS ' 400km

From an Eulerian point of view, this gain of zonal momentum at the Equator comes from the
meridional acceleration of geostrophic currents, which drives a meridional convergence of zonal
momentum: −v ∂u

∂y > 0 (Fig.4.5). However, water masses that converge to the Equator are mostly
subtropical waters from ∼ 20−30◦ of latitude, and not from the Tropical Cells as suggested from
the result above. Indeed, water columns are also squashed when moving equatorward to conserve
their potential vorticity, which is evident from the shoaling of isopycnals towards the Equator
(Fig.4.4). Hence the role of meridional convergence is in reality more secondary than suggested
when assuming a constant isopycnal thickness.

Exercise: what would happen to the tropical Pacific circulation if the Equatorial trades were
suddenly reversed into Westerlies?

Response: El Niño. Namely: a reversal of the eSEC and of the Tropical Gyres, hence also
of the nSEC, cSEC, a cancellation of the Tropical Gyre circulation and of the North Equatorial
Countercurrent. The consequence for temperature distributions: weakening to cancellation of the
zonal sea level, temperature and hence pressure gradients, and as a consequence also weakening
of the Equatorial Undercurrent. This response is not instantaneous and involves mostly Equatorial
Kelvin and Rossby waves of typical propagation times ∼ 2 months and ∼ 6 months across the
Tropical Pacific. Note that mid-latitude Rossby waves take typically decades to cross oceanic
basins: this is why the Equatorial ocean variability is coupled to the atmosphere, contrary to
mid-latitudes.
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