Formation of fog due to stratus lowering:

experimental and numerical study of the life cycle

PHD defended on19April 2022 National Center for Meteorological Research

Maroua Fathalli

BURE, (F. Burnet)

supervised by Christine Lac & Frédéric Burnet

07/06/2022 - SOFOG3D meeting

GMEI/MNPCA & GMME

- **FSTL**: poorly studied compared to **RAD**
 - difficult to predict.

Numerical weather prediction (NWP):

• **AROME** => difficulties to correctly forecast stratus lowering.

During winter 2011 at Paris-CDG, (17 RAD, 20 FSTL et 3 ADV)

AROME simulated about 70 % RAD and **30 % FSTL** (Philip et al. (2016).

Better understanding for better forecasting. — What are the processes involved ?

Introduction **OODOOO** *IOP2* **OODOOO**

•••••••• Statistic

Conclusion

Better understand the processes leading (or not) to stratus lowering.

1st objective

 Are stratus lowering driven primarily by local processes (such as microphysics) or non-local (large-scale conditions or mesoscale circulations) ?

2nd objective

• What are the main characteristics of stratus lowering fogs (thermodynamics, microphysics)?

Presentation outline

1. Introduction

2. Experimental study of IOP2 (FSTL observed December 1 - 2, 2016)

3. Numerical study of IOP2

4. Conclusion and perspectives

Presentation outline

1. Introduction

2. Experimental study of IOP2 (FSTL observed December 1 - 2, 2016)

3. Numerical study of IOP2

4. Conclusion and perspectives

Overview of the case study: IOP2 1st and 2nd December 2016

Satellite products

Introduction

Cloud type

00000000

Cloud-free land

Very low clouds

Low clouds

Statistic

Other type of clouds

Source (E. Fontaine (CEMS))

Conclusion

Introduction IOP2 ••••••••• *Statistic* Conclusion Microphysical properties during lowering 10³ 300 300 9 µm (cm⁻³.µm⁻¹) 22 µm 10² Height (m) Height (m) 10¹ dN/dlogD 100 100 10⁰ **Sedimentation** Activation 0⁺0 0.0 0.0 10^{-1} 0.1 0.2 0.3 0.4 100 200 300 10 20 50 LWC $(g.m^{-3})$ N_{c} (cm⁻³) Diametre (μm)

Introduction

0000000

IOP2 •••••••

Statistic

IOP2

Burnet et al, in prep

Presentation outline

1. Introduction

2. Experimental study of **IOP2** (**FSTL** observed December 1 - 2, 2016)

3. Numerical study of IOP2

4. Conclusion and perspectives

Introduction ••••••• IOP2 ••••••• •••••••

Statistic

Conclusion

Reference simulation with Meso-NH and LIMA at high resolution

- Horizontal grid resolution: 500 m et 100 m with two-way nested grids.
- 150 vertical levels : 0 to 3250 (from $\Delta z = 1.5$ to 50 m)
- Initial/coupling: AROME analysis.(1.3 km)

IOP 2 (BURE) - 1st and 2nd December 2016 Model 1 Model 2 2- WAY Model 1 Model 2 01/12 01/12 01/12 02/12 15hUTC 18hUTC 12hUTC

• Turbulence :

1D at $\Delta x=500$ m and mixing length **BL89 3D** at $\Delta x=100$ m and mixing length **DEAR**

Prognostic equation for (Cuxart et al, 2000)

- Microphysics: LIMA (two-moment scheme)
- LIMA with modified activation according to Vié et al. (2022)
 - Aerosol initialization from ground aerosol measurements (3 modes).
 - Constant aerosol concentrations over the vertical.

Delay of a few hours between the simulation and the observations.

Validation of the reference simulation

Measurements with CDP under the tethered balloon

Differences between stratus and fog fairly well reproduced

Statistic

Horizontal representation of stratus lowering

- Effect of advection (northeast to southwest).
- Effect of orography: late or no fog in the valleys.

Statistic

Conclusion

(b) 100m

Vertical representation of stratus lowering

Advection of stratus from northeast to southwest. . Lowering: 1: NE, 2 : OPE, 3 : SW.

• Stratus progressively thicker.

Introduction ••••••• IOP2 ••••••• •••••••

Statistic

Analysis of stratus cloud lowering

Budgets to better characterize the processes leading to stratus lowering

Statistic

Budgets to better characterize the processes leading to stratus lowering

(b) 100m

NE 0750 UTC - 0920 UTC

IOP2 **●●●●●● ●●●●●●●**

Statistique

Impact of microphysics

Hour fog formation

REF

NOSED (Without droplet sedimentation)

Sedimentation is the second process that favors the stratus lowering

time

Presentation outline

1. Introduction

2. Experimental study of **IOP2** (**FSTL** observed December 1 - 2, 2016)

3. Numerical study of IOP2

4. Conclusion and perspectives

1^{er} objective

2^{eme} objective

- What are the main characteristics of stratus lowering fogs?
- Cloud water production in the fog phase.
- Thicker FSTL but with lower water content near the ground than RAD.

Introduction ••••••• IOP2 ••••••• ••••••• Statistic

Perspectives

Post-doc: FSTL during SOFOG3D:

microphysical properties and processes study

- Document the evolution of boundary layer properties during the stratus to fog event from in situ measurements and remote sensing.
- Perform numerical simulation of 2-3 case studies with the Meso-NH model in LES mode and validate with the available observation.
- Conduct budget analysis to investigate local and non local contributions of the processes leading to the fog formation by stratus lowering.

Thank you for your attention

Introduction POI2 **••••••• •••••• Statistique ••••**

Conclusion

Caractérisation des FSTL par rapport aux RAD

• LWP

- > Variability between the different cases of **FSTL** and RAD
- **FSTL** have less liquid water on the ground than RAD
- **FSTL** are thicker than **RAD**