

WP3: 3D Large Eddy Simulations (LES) and impact of heterogeneities

Leader: C. Lac (CNRM)

Photo F. Burnet

Task 3.1: LES and validation (T0+24 - T0+36)

Run of the most documented cases with Meso-NH model from AROME analysis with gridnesting downscaling up to 5m resolution Post-Doc 12 months

Tests of the recent advances in parametrizations:

- SURFEX (Masson et al., 2013) ISBA-Diff ISBA-MEB (Boone et al., 2017) vegetation scheme HR surface data base
- Radiation: ecRad (Hogan and Bozzo, 2016) with 14 SW bands and improved radiative optical properties (Jahangir et al.)
- Microphysics: LIMA 2-moment scheme (Vié et al., 2016)
 Initialization of aerosols from OPC and SMPS

Recent improvement of the activation process in LIMA

$$\frac{dS}{dt} = \psi_1 w - \psi_2 \frac{dr_c}{dt} + \psi_3 \frac{d\theta}{dt} = \mathbf{0} \longrightarrow \mathbf{S}_{\max} \longrightarrow \mathbf{N}_{\text{CCN, activés}}$$

$$\frac{dS}{dt} = \psi_1 w - \psi_2 \frac{dr_c}{dt} + \psi_3 \frac{d\theta}{dt} \Big|_{\text{RAD}}$$

: corrections proposed by Thouron et al. (2012)

Task 3.2: Impact of heterogeneities (T0+30 - T0+42)

- To better understand how surface heterogeneities interact with turbulence:
 - Are the heterogeneities in the fog life cycle between the sites a consequence of vegetation heterogeneities? LES and observations

- What is the impact on TKE budget? anisotropy of turbulence? Surface energy budget?
- Use Meso-NH-SURFEX as a laboratory : impact of modification of vegetation characteristics on the fog life cycle

Task 3.3: Impact of orography and advective processes (T0+30 - T0+42)

- Local circulations studied with scanning Doppler wind lidar, Doppler wind lidar profiler (Sabatier et al., 2018), scanning 95GHz Doppler radar.
- LES to quantify local and non-local contributions to the cloud mixing ratio budget

Towards Large-Eddy Simulations of surface heterogeneities impact on fog with Meso-NH

Quentin Rodier, Marie-Adèle Magnaldo, Christine Lac

SOFOG3D data & science meeting 9 november 2020

First results for T 3.1 and 3.2:

 Work from Marie-Adèle Magnaldo (March → August 2020 master's thesis), CNRM

Étude des hétérogénéités sur le cycle de vie du brouillard durant la campagne SOFOG3D : observations et simulations

Auteur : Adèle Magnaldo Encadrants : Quentin Rodier Christine Lac

Rapport de Projet de Fin d'Etude

Objectives

- Identify the IOPs with heterogeneities of the fog life cycle between the sites
- Statistical evaluation of the heterogeneities during the campaign → Select one IOP representative of the statistics with numerous measurements
- Configure Meso-NH with refining resolution and run a reference simulation
- Are the heterogeneities reproduced at 100m?
- Outlook

Outline

- Identify the IOPs with heterogeneities of the fog life cycle between the sites
- Statistical evaluation of the heterogeneities during the campaign → Select one IOP representative of the statistics with numerous measurements
- Configure Meso-NH with refining resolution and run a reference simulation
- Are the heterogeneities reproduced at 100m?
- Outlook

IOPs with heterogeneities

- 15 IOPs
- 3 observed deep fog (height > 200m): IOP6 (5-6 Jan.), IOP11 (8-9 Feb.),
 IOP14 (7-8 Mar.)
- Focus on 4 ground stations

- Discontinuous urban area
- Not irrigated plowland
- Coniferous forest
- Mixed forest
- Shrub vegetation
- Hardwood forest

(ref : Geoportail.gouv.fr)

IOPs with heterogeneities

- 15 IOPs
- 3 observed deep fog (height > 200m) : IOP6 (5-6 Jan.), IOP11 (8-9 Feb.),
 IOP14 (7-8 Mar.)
- Focus on 4 ground stations

IOPs with heterogeneities

Focus on 4 ground stations

Orography from 90m resolution SRTM

Nature des sols des différents sites instrumentés Land cover

- SuperSite and Microphi-foret very close
- Noaillan down to a small river valley

POI 6 : 5-6 Jan.

POI 11 : 8-9 Feb.

Fog lifetime : Noaillan < Microphi-foret < SuperSite < Moustey
Mean visibility (< 1km) : Noaillan > Microphi-foret ~ SuperSite ~ Moustey

POI 14 : 7-8 March

Outline

- Identify the IOPs with heterogeneities of the fog life cycle between the sites
- Statistical evaluation of the heterogeneities during the campaign → Select one IOP representative of the statistics with numerous measurements
- Configure Meso-NH with refining resolution and run a reference simulation
- Are the heterogeneities reproduced ?
- Outlook

Statistical metrics for the longest fogs (> 3h without intermittency)
 ⇒ 6 events

Fog lifetime : Noaillan < Microphi-foret ~ SuperSite < Moustey
Mean visibility (< 1km) : Noaillan > Microphi-foret ~ SuperSite > Moustey

Statistical metrics for the longest fogs (> 3h without intermittency)
 ⇒ 6 events

Fog lifetime : Noaillan < Microphi-foret ~ SuperSite < Moustey

Mean visibility (< 1km) : Noaillan > Microphi-foret ~ SuperSite > Moustey

- The 3 selected IOPs are in agreement with the statistics
- IOP14 presents strong heterogeneities and numerous available observations (UAV, tethered balloon with turbulence ...)

Outline

- Identify the IOPs with heterogeneities of the fog life cycle between the sites
- Statistical evaluation of the heterogeneities during the campaign → Select one IOP representative of the statistics with numerous measurements
- Configure Meso-NH with refining resolution and run a reference simulation
 - Méso-NH 500m vs AROME 500m
 - Méso-NH 100m
- Are the heterogeneities reproduced at 100m?
- Outlook

Fine scale Simulations of POI 14

Downscaling approach towards the LES of stable boundary layer which needs metric resolution

75

- 50

- 3 Méso-NH simulations
- D1: 500m hor. Resolution ~ AROME-SOFOG
- D2: 100m
- D2-D3: two-way grid-nesting 100m + 20m

AROME domain

Orography (m)

Meso-NH configuration

- Surface: fully coupled with SURFEX (Masson et al. 2013): ISBA-3L, TEB
- Microphysics : one-moment ICE3
 (prognostic mixing ratios + fixed droplets concentration = 300cm⁻³)
- Turbulence (Cuxart et al. 2000): TKE + mixing length
 1D for MESONH-500 with BL89
 3D for MESONH100 and MESONH100-20 with Deardorff
- Radiation : ECMWF with RRTM for LW and Fouquart-Bonnel for SW
- Vertical resolution is 2,3m at the ground (138 levels)

Observations at the SuperSite

- Beginning of the fog = 21h30
- End of the fog = 7h
- Radar : **no cloud above** the fog

Horizontal resolution sensitivity of MNH at Supersite

Visibility (m) from Kunkel

The visibility is under-estimated (Kunkel formula)

MESONH-500 shows a temporary dissipation

MESONH500 vs AROME500 vs SuperSite

The temporary dissipation also exists in AROME 500.

MESONH500 vs AROME500 vs SuperSite

Cloud mixing ratio (kg/kg)

- The temporary dissipation can be explained by clouds formed above the fog at 500m but not at 100m
- These clouds do not exist (radar)
- A resolution of 100m is necessary

Outline

- Identify the IOPs with heterogeneities of the fog life cycle between the sites
- Statistical evaluation of the heterogeneities during the campaign → Select one IOP representative of the statistics with numerous measurements
- Configure Meso-NH with refining resolution and run a reference simulation
 - Méso-NH 500m vs AROME 500m
 - Méso-NH 100m
- Are the heterogeneities reproduced at 100m?
- Outlook

Visibility at 100m vs OBS at 2m for POI14

Satisfying variability but underestimation of the visibility (⇒ Kunkel formula, 1-moment)

The orography can explain the longer duration and the lower visibility at Moustey (river valley) compared to the Supersite

Impact of land cover on wind speed

Database used: Ecoclimap II (1 km global resolution)

⇒ The wind speed increases where rugosity drops

Impact of land cover on wind speed

- ⇒ However, the wind speeds is overestimated over the forest
- ⇒ need a better resolution of land cover and the forest drag

Impact of land cover on cloud mixing ratio

In agricultural fields

© Cb

Low impact on these 4 sites

Conclusion

- The IOP14 as a deep (~200m) and long (> 6-7h) fog is an interesting case to study fog heterogeneities between sites
- The 500m resolution with MesoNH and AROME produces a fog disruption due to unrealistic upper level clouds
- Higher resolution seems promising to reproduce heterogeneities between sites

 The simulated visibility variability is well represented at 100m resolution but needs a 2-moment scheme to be more realistic (impact of droplet concentration variability)

Outlook (Postdoc position open)

- Sensitivity study to :
 - Tree drag parametrization
 - Higher resolution land cover with Ecoclimap-SG (300m) and LAI with LDAS (Land Data Assimilation System)
 - Orography at 30m resolution with new SRTM-30m
 - Microphysics with LIMA (+ initialization from observed aerosols)
 - Turn on droplets deposition on trees and grass
- Towards LES resolution (20m + 5m)
- Complete the analysis with turbulence and microphysics observations from UAV, tethered balloon, MWR
- Run the LES configurations to other POIs

