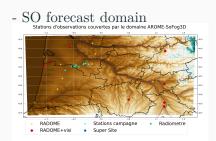
2nd WorkShop SoFog3D

EVALUATIONS OF AROME DURING SOFOG3D CAMPAIGN

Salomé ANTOINE Supervised by : Rachel HONNERT et Yann SEITY 7^{th} June 2021


Météo-France - CNRM/GMAP/PROC

AROME configuration

- 2 grids : 1250m L90 : 1^{st} level at 5m 500m L156 : 1^{st} level at 1m Philip et al., 2016

- Run of 00 UTC
- 48h lead time
- Focus lead time :

+19+24 = beginning of night +25+30 = middle of night +31+36 = end of night / morning

- Reference (=operationnal) : resolution :1250m L90 microphysics : ICE3 deposition : no

AROME simulations – sensitives tests

Comparison of several model configurations

- two resolutions **1250mL90** - like operational model **500mL156** - hectometric and finer vertical resolution evaluation

- two microphysical schemes

ICE3 (Pinty and Jabouille, 1998) – 1 moment scheme , operational scheme (fixed N_c)

LIMA (Vié et al., 2016) – 2 moment scheme (prognostic N_c ; aerosols initialized with a constant vertical profile) but without subgrid condensation

- Several sensitivity tests With (wid) and without (wod) **deposition** term With (wisc) and without (wosc) **subgrid condensation**

- Statistics on the 6 months campaign

- IOPs studies

Impact of resolution

With the operational configuration : ICE3 microphysics without deposition

Lead time since 00UTC Run the forecast day : $+25h$ à $+30h$					
		DR	FAR	FBI	
$1250 \mathrm{mL90}$	ICE3 R00	56	38	0.91	
$500 \mathrm{mL} 156$	ICE3 R00	67	44	1.2	

More fog forecast by 500mL156 grid :

- best detection rate but ...
- more false alarms

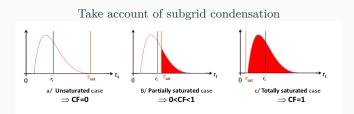
DR = Detection Rate; FAR = False Alarm Rate; FBI = Nb forecasted events

Impact of deposit

ICE3 microphysics with deposit : to reduce the liquid water content overestimation in fog Constant speed of 2cm/s

Deposit measurement

Credit: Yann SEITY


Lead time since 00010 ftun the forecast day . ± 250 a ± 500							
			DR	FAR	FBI		
$1250 \mathrm{mL90}$	ICE3	R00	56	38	0.91		
$1250 \mathrm{mL90}$	ICE3 + deposit	R00	45	35	0.69		
			DR	FAR	FBI		
$500 \mathrm{mL} 156$	ICE3	R00	67	44	1.2		
$500 \mathrm{mL} 156$	ICE3 + deposit	R00	64	43	1.13		

Lead time since 00UTC Run the forecast day : +25h à +30h

- Decrease of DR 1250mL90
- Smaller impact in 500mL156 grid : first level at 1m (VS 5m to 1250mL90)

$$DR = Detection Rate; FAR = False Alarm Rate; FBI = \frac{Nb \text{ forecasted events}}{Nb \text{ observed events}}$$

Impact of subgrid condensation

Lead time since 00UTC Run the forecast day : $+25h$ à $+30h$					
			FAR	FBI	
$1250 \mathrm{mL90}$	ICE3 wisc wod R00		38	0.91	
$1250 \mathrm{mL90}$	ICE3 wosc wod R00	38	30	0.53	

- Much less fog forecast by ICE3 wosc (2/5 events missed)
- Change LIMA version with adding of subgrid condensation

 $DR = Detection Rate; FAR = False Alarm Rate; FBI = \frac{Nb \ forecasted \ events}{Nb \ observed \ events}; wod = without deposition; wid = with deposition; wosc = without subgrid condensation; wisc = with subgrid condensation$

Impact of microphysical scheme

ICE3 (1-moment scheme) VS LIMA (2-moment scheme)

		DR	FAR	FBI
$1250 \mathrm{mL90}$	ICE3 wisc wid R00	45	35	0.69
$1250 \mathrm{mL90}$	LIMA wisc wid R00	44	46	0.83
		DR	FAR	FBI
500mL156	ICE3 wisc wid R00	64	43	гы 1.13

Lead time since 00UTC Run the forecast day : +25h à +30h

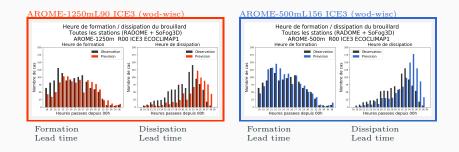
- Close results between ICE3 and LIMA WITH subgrid condensation (recently added in the scheme).

 $DR = Detection Rate; FAR = False Alarm Rate; FBI = \frac{Nb \ forecasted \ events}{Nb \ observed \ events}; wod = without deposition; wid = with deposition; wosc = without subgrid condensation; wisc = with subgrid condensation$

Statistics on the 6 months

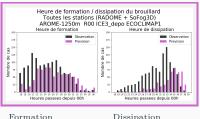
Previous statistics on the beginning of the night (+19 to +24):

- A lot of no detection
- Not enough fog events forecasted


		DR	FAR	FBI
$1250 \mathrm{mL90}$	ICE3 R00	43	43	0.75
$500 \mathrm{mL} 156$	ICE3 R00	59	49	1.15

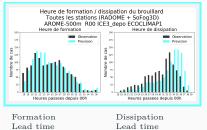
Previous statistics on the end of the night/morning (+31 to +36):

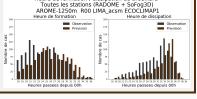
- Many false alarms
- Too many fog events forecasted


		DR	FAR	FBI
$1250 \mathrm{mL90}$	ICE3 R00	39	53	0.84
$500 \mathrm{mL} 156$	ICE3 R00	61	61	1.55

Formation and dissipation fog statistics

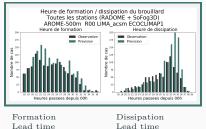
- Model delay in formation, especially by $1250\mathrm{mL90}$
- Model delay in dissipation in $1250\mathrm{mL90}$ and $500\mathrm{mL156}$
- Too long events forecast (not shown)


Impact of microphysical scheme


Formation Lead time Dissipation Lead time

AROME-500mL156 ICE3 (wid-wisc)

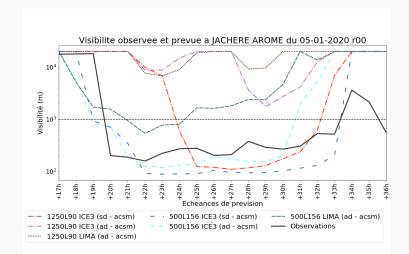
AROME-1250mL90 ICE3 (wid-wisc)


Prouillard Heure de formation / dissipation du brouillard

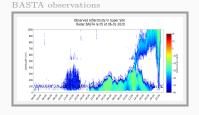
Formation Lead time Dissipation Lead time

AROME-500mL156 LIMA (wid-wisc)

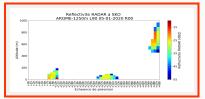
AROME-1250mL90 LIMA (wid-wisc)

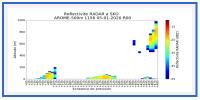

Close results between ICE3 and LIMA

- More fog forecast by 500m L156 grid
- Deposition : stronger impact at 1250mL90 grid
- We have to take into account subgrid condensation
- With subgrid condensation : ICE3 and LIMA are close
- Delay in formation with 1250m L90 grid (ICE3 and LIMA)
- Delay in dissipation fog (ICE3 and LIMA)

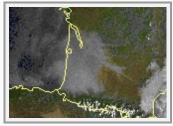

- Statistics on the 6 months campaign
- IOPs studies

$IOP-6 - 5^{th}$ to 6^{th} January 2020


One of the most developed event of campaign But different models configuration performed bad.


IOP-6 – RADAR BASTA vs RADAR simulations

AROME-1250m ICE3

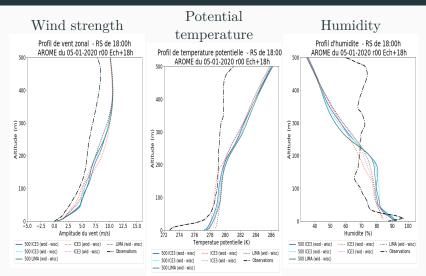

AROME-500m ICE3

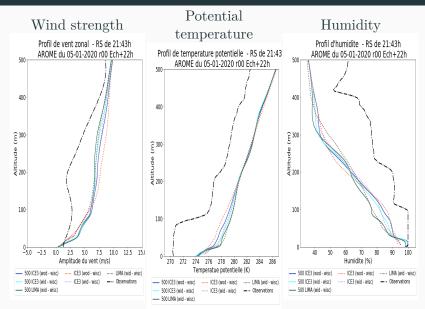
Not enough vertically developed.

IOP-6 – Low cloud at 08h UTC the 6^{th} January

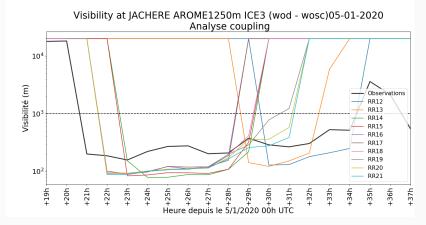
Satellite visible observation

AROME 500m L156 ICE3 (wid - wisc)

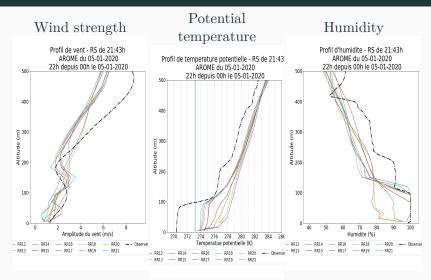

AROME 1250m L90 ICE3 (wid - wisc)


AROME 1250m L90 LIMA (wid - wisc)

${\rm IOP-6-Radiosounding}$ at 18h UTC – initial condition of the night



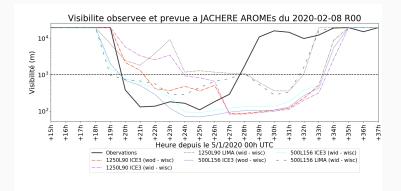
IOP-6 – Radiosounding at 22h UTC – Fog formation


IOP-6 – Best forecast with better initial conditions

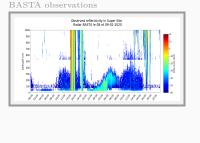
Coupling with AROME analyses Run from 12h UTC to 21h UTC

Good fog forecast in formation with Run 16 and after.

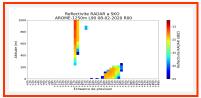
IOP-6 – Best forecast with better initial conditions

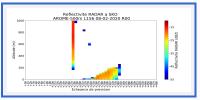

Best profiles

Fog not enough developed in the model (horizontally and vertically)

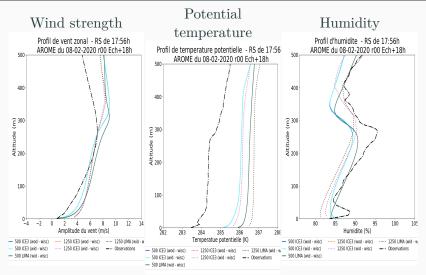

- Not explained by microphysics
- Can be corrected with better initial conditions

IOP-11

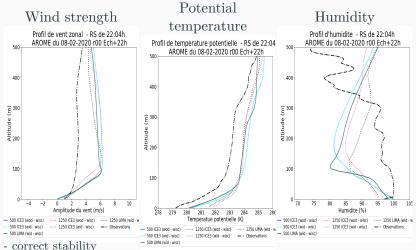

Night from 8^{th} to 9th February 2020 Delay in formation to 1250L90 ICE3 and dissipation to 1250L90 ICE3 and 500L156 ICE3


IOP-11 – RADAR BASTA vs RADAR simulations

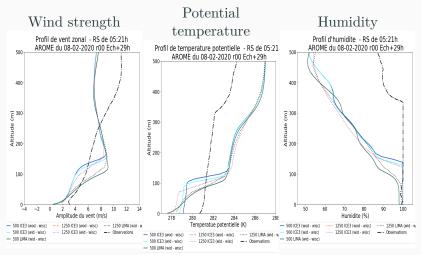
AROME-1250m ICE3



AROME-500m ICE3


- Not enough vertically developed.
- Fog to stratus observed near 5 UTC not forecast in models (always fog)

${\rm IOP}\mathchar`-11-{\rm Radiosounding}$ at 18 UTC – initial condition of the night


- too hot but correct stability and wind

IOP-11 – Radiosounding at 22 UTC – Fog formation

- too dry in 1250m L90 grid
- wind inversion not present in observation

${\rm IOP}\mathchar`-11-{\rm Radiosounding}$ at 05 UTC – initial condition of the night

dissipation of fog in observation but the profile is saturated

- Aerosols CAMS for LIMA
- Change visibility formulation for LIMA
- Use microphysics measurements to validate LIMA
- Study a false alarm IOP (IOP-8)
- Continue to study the IOP-11

Thanks for your attention Questions?

General statistics – microphysics comparison

Lead time $+19 - +24$					
		DR	FAR	FBI	
$1250 \mathrm{mL90}$	ICE3 (wid-wisc) R00	30	41	0.5	
$1250 \mathrm{mL90}$	LIMA (wid-wisc) R00	28	55	0.62	
$1250 \mathrm{mL90}$	ICE3 (wid-wisc) R00	56	48	1.09	
$1250 \mathrm{mL90}$	LIMA (wid-wisc) R00	55	57	1.27	

Lead time +31 - +36

		DR	FAR	FBI
$1250 \mathrm{mL90}$	ICE3 (wid-wisc) R00	47	57	1.09
$1250 \mathrm{mL90}$	LIMA (wid-wisc) R00	40	67	1.22
$1250 \mathrm{mL90}$	ICE3 (wid-wisc) R00	57	61	1.45
$1250 \mathrm{mL90}$	LIMA (wid-wisc) R00	56	65	1.61

General statistics – Modification of N_c

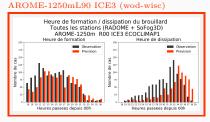
	Lead time $\pm 19 - \pm 24$					
				DR	FAR	FBI
$1250 \mathrm{mL90}$	ICE3	$N_c = 300.cm^{-3}$	R00	44	45	0.79
$1250 \mathrm{mL90}$	ICE3	$N_c = 100.cm^{-3}$	R00	35	45	0.63
$1250 \mathrm{mL90}$	ICE3	$N_c = 50.cm^{-3}$	R00	35	50	0.69
		Lead time $+25$	- +30			
				DR	FAR	FBI
$1250 \mathrm{mL90}$	ICE3	$N_c = 300.cm^{-3}$	R00	59	38	0.96
$1250 \mathrm{mL90}$	ICE3	$N_c = 100.cm^{-3}$	R00	53	37	0.85
$1250 \mathrm{mL90}$	ICE3	$N_c = 50.cm^{-3}$	R00	51	40	0.85
Lead time $+31 - +36$						
				DR	FAR	FBI
$1250 \mathrm{mL90}$	ICE3	$N_c = 300.cm^{-3}$	R00	62	55	1.37
$1250 \mathrm{mL90}$	ICE3	$N_c = 100.cm^{-3}$	R00	57	57	1.32
$1250 \mathrm{mL90}$	ICE3	$N_c = 50.cm^{-3}$	R00	56	59	1.35

1 10

1 . .

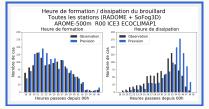
General statistics – comparison between run

Lead time $+19 - +24$						
		DR	FAR	FBI		
$1250 \mathrm{mL90}$	ICE3 R00	44	45	0.79		
$1250 \mathrm{mL90}$	ICE3 R12	- 33	39	0.53		
$1250 \mathrm{mL90}$	ICE3 R12	38	36	0.60		

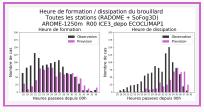

Lead time +25 - +30

		DR	FAR	FBI
$1250 \mathrm{mL90}$	ICE3 R00	59	38	0.96
$1250 \mathrm{mL90}$	ICE3 R12	54	29	0.76
$1250 \mathrm{mL90}$	ICE3 R12	54	28	0.75

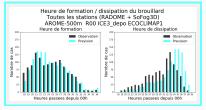
Lead time +31 - +36


		DR	FAR	FBI
$1250 \mathrm{mL90}$	ICE3 R00	62	55	1.37
$1250 \mathrm{mL90}$	ICE3 R12	58	51	1.18
$1250 \mathrm{mL90}$	ICE3 $R12$	58	51	1.17

Impact of deposition

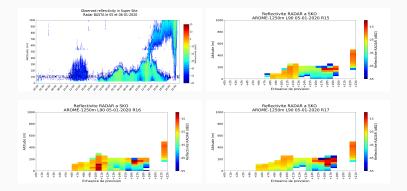

Formation Lead time Dissipation Lead time

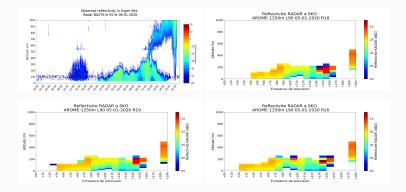
AROME-500mL156 ICE3 (wod-wisc)

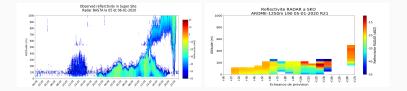

Formation Lead time Dissipation Lead time

AROME-1250mL190 ICE3 (wid-wisc)

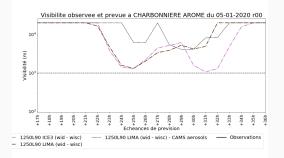


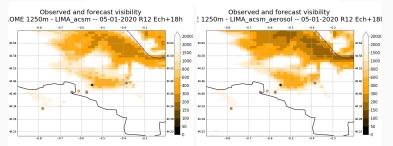

Formation Lead time Dissipation Lead time

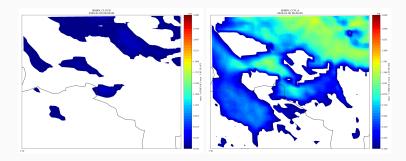

AROME-500mL156 ICE3 (wid-wisc)

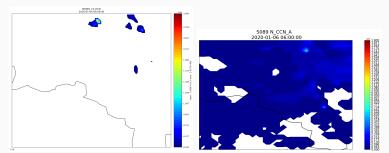


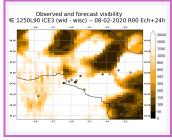
Formation Lead time Dissipation Lead time

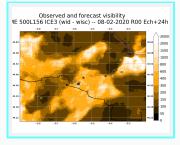




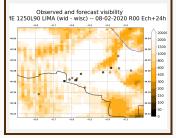


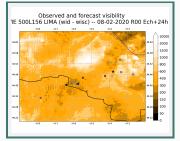

IOP-6 – CAMS aerosol


IOP-6 – CAMS aerosol



IOP-11 – Visi 2D Lead time +24


AROME-1250mL90 ICE3 (wid-wisc)


AROME-500mL156 ICE3 (wid-wisc)

AROME-1250mL90 LIMA (wid-wisc)

AROME-500mL156 LIMA (wid-wisc)

- A. Philip, T. Bergot, Y. Bouteloup, and F. Bouyssel. The Impact of Vertical Resolution on Fog Forecasting in the Kilometric-Scale Model AROME : A Case Study and Statistics. <u>Weather and Forecasting</u>, 31(5):1655-1671, 2016. doi: 10.1175/WAF-D-16-0074.1. URL https://doi.org/10.1175/WAF-D-16-0074.1.
- [2] J. Pinty and P. Jabouille. A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model : simulations of a squall line and of orographic precipitations. Proceedings of the AMS conference on cloud physics., 1998.
- [3] B. Vié, J.-P. Pinty, S. Berthet, and M. Leriche. Lima (v1.0) : A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei. <u>Geoscientific Model Development</u>, 9(2):567-586, 2016. doi : 10.5194/gmd-9-567-2016. URL https://gmd.copernicus.org/articles/9/567/2016/.