

WP3: 3D Large Eddy Simulations (LES) and

impact of heterogeneities

Leader : C. Lac (CNRM)

Photo F. Burnet

LES

- Most of the eddies are resolved : Pope (2000) : $TKE_{resolved} > 80 \% TKE_{total}$ Stable boundary layer : $\Delta x = a$ few meters (Beare and McVean, 2004) Importance of the vertical resolution for fog : $\Delta z \sim 1$ m
- A way to conduct process studies, to better understand physical processes and to improve parametrizations
- First LESs of fog : Nakanishi (2000), Porson et al. (2011), Bergot (2013) : with homogeneous canopies
- LESs of fog with surface heterogeneities : Bergot et al. (2015) (Buildings), Mazoyer et al.
 (2017) (Trees) using a drag force approach

CDG airport

Bergot et al., 2013

LES of fog : reference but uncertainties

Microphysics :

- 2-moment microphysical scheme neccssary to take into account aerosols for activation and the radiative effect of droplet concentration (Nc) : NEED of VALIDATION

- Nc could be overestimated \rightarrow thick fog : ACTIVATION process

Top-entrainment :

- Eddies are smaller than in the fog layer
- Strong impact of numerical transport schemes
- Surface processes and impact of heterogeneities :
 - Orography, Vegetation types

LES = a valuable aid but needs validation with measurement

LES of fog (Lunet et al., 2017)

Task 3.1 : LES and validation (T0+24 - T0+36)

Run of the most documented cases with **Meso-NH model** (Lac et al., 2018) from **AROME** analysis with grid-nesting downscaling \rightarrow Post-Doc 12 months

bands and improved radiative optical properties (Jahanghir PhD)

SURFEX (Masson et al., 2013) ISBA-Diff vegetation scheme – HR surface data base

Task 3.2 : Impact of heterogeneities (T0+30 - T0+42)

- To better understand how surface heterogeneities interact with turbulence :
- 3 D mapping of the super-site with 3 different vegetation types

- Use Meso-NH-SURFEX as a laboratory : impact of modification

of vegetation characteristics on the fog life cycle

- TKE budget, anisotropy of turbulence (flux masts with turbulence fluxes)
- Surface energy budget to minimize the non closure, 10000

Task 3.3 : Impact of orography and advective processes (T0+30 - T0+42)

Local circulations studied with scanning Doppler wind lidar, Doppler wind lidar profiler, scanning 95GHz Doppler radar . Thermal IR imaging.

LES to quantify local and non-local contributions to the cloud mixing ratio budget **WP3 : 3D Large Eddy Simulations (LES) and impact of heterogeneities**

Questions ?

WP4 : Advanced process studies

Leaders : M. Haeffelin (IPSL) and C. Lac (CNRM)

- To better understand **contrasts** leading to radically different fate in fog life cycles :
- Shallow stable fog vs deep adiabatic fog
- Stratus lowering into fog vs stratus persisting aloft
- Daytime fog dissipation or lifting vs daytime fog persistence

Using measurements and LES

Processes mainly investigated :

Task 4.1 : Transition thin/thick fog – Entrainment at fog top (T0+30 - T0+42)

- Transition from mist to thin fog : Aerosol hydratation
- Transition from optically thin to thick fog : Aerosol growth and activation process : aerosol measurement and improvement of the activation parametrization ;

Better understanding of effect of vertical stability and mixing on the transition.

- Once fog is thick, quantification of entrainment with thermodynamical and microphysical in-situ observations (tethered ballon, UAV, MWR) and LES
 - Impact of humidity and temperature profiles above the fog on entrainment
 - Impact of entrainment on microphysics

Task 4.3 : Fog dissipation phase (T0+30 - T0+42)

Evolution of the LWP budget and LWC profile to quantify and analyse the contribution of fog-top entrainment, subsidence, radiative cooling, radiative absorption (spectrophotometer measurements), droplet deposition/sedimentation and energy budget at the fog base.

The LWP budget will be derived from LES simulations and detailed observations as input to diagnostic conceptual models (Waersted et al., 2019)

\rightarrow Post-Doc 14 months :

- LWP budget for each documented fog case
- Sensitivity of fog life cycle to key variables driving major processes

Maroua Fathalli PhD